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Sous-action « Classification et découpage de l'aquifère rhénan dans la zone d'étude par 
secteurs homogènes ou ayant un comportement hydrogéologique identique. » (A3.4), 
réalisé dans le cadre de l’action « Caractérisation de l’évolution des nappes, en fonction 
de divers facteurs (climatiques / anthropiques) » du projet Interreg GRoundwater 
EvoluTions and resilience of Associated biodiversity - Upper Rhine (GRETA). 
 

1 Objectif, contexte et méthodes 
Le projet Interreg GRETA (Groundwater Evolutions and Resilience of Associated Biodiversity – 
Upper Rhine) est un projet franco-allemand qui vise à évaluer les eƯets du changement 
climatique sur la nappe de l’aquifère du Rhin Supérieur. Face à des pressions climatiques et 
anthropiques accrues sur l’environnement, ce projet vise à apporter des connaissances clés sur 
l’impact du changement climatique sur la ressource en eau et les conséquences sur les 
écosystèmes associés. Pour ce faire, et grâce aux nombreuses données de suivi piézométrique 
dont bénéficie l’aquifère rhénan, un diagnostic complet du fonctionnement historique de 
l’aquifère sera réalisé, constituant ainsi un socle de connaissances sur lequel les travaux 
consécutifs d’évaluation des impacts du changement climatique pourront s’appuyer.  Dans ce 
cadre, une sectorisation de l’aquifère a été réalisée afin de permettre l’identification de zones 
présentant des comportement et/ou des caractéristiques de fonctionnement similaires. Les 
travaux de sectorisation conduits sont décrits dans la présente note.  

L'aquifère alluvial du Rhin supérieur est situé de part et d’autre de la frontière franco-allemande, 
accompagnant le fleuve dont il tire son nom. La partie sud du fossé du Rhin supérieur, de Bâle 
(Suisse) à Karlsruhe (Allemagne) constitue la zone étudiée. Elle est délimitée à l'ouest par les 
Vosges (France) et à l'est par les montagnes de la Forêt-Noire (Allemagne). Cette zone correspond 
également au périmètre du modèle numérique LOGAR [14]. Ce système aquifère peut atteindre 
plus de 200 m d'épaisseur en son centre, celle-ci diminuant vers les limites de la plaine alluviale. 
L'écoulement des eaux souterraines est orienté du Sud vers le Nord, parallèlement au Rhin dans 
la partie centrale, et sur les bordures des contreforts en direction SW-NE (France) et SE-NW 
(Allemagne). 

Cet aquifère constitue l’une des plus importantes ressources en eau d’Europe et le volume total 
d’eau contenu dans la zone d’étude de l’aquifère est estimé entre 65 et 80 milliards de m3.  
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Sa recharge est assurée par les précipitations locales, les infiltrations du Rhin ainsi que par les 
rivières prenant leurs sources dans les Vosges et la Forêt Noire, en proportion variable selon les 
secteurs. 

L’aquifère rhénan concentre des enjeux de diƯérente nature puisque sa ressource est exploitée 
pour de multiples usages anthropiques par des prélèvements en forages : usages industriels, 
alimentation en eau potable ou encore usages agricoles. Par ailleurs, la nappe de l’aquifère 
rhénan joue un rôle prépondérant d’alimentation en eau de zones humides et est fortement liée 
au réseau hydrographique de surface.  Les nombreux cours d’eau phréatiques et semi-
phréatiques témoignent des apports hydriques depuis la nappe, qui jouent un rôle prépondérant 
dans leur alimentation. 

Le projet franco-allemand Interreg GRETA, dans lequel s’inscrivent les travaux présentés ci-
dessous, vise à apporter de nouvelles connaissances sur l’impact du changement climatique sur 
l’aquifère rhénan ainsi que sur l’eƯet de ces évolutions piézométriques sur les écosystèmes liés.  

Des travaux de regroupement (ou clustering) des piézomètres ont été opérés afin d'intégrer dans 
l’analyse la variabilité spatiale des comportements de l’aquifère, liée à la fois à la variabilité 
spatiale des conditions d’alimentations, aux paramètres hydrodynamiques du système aquifère 
et aux usages locaux de la ressource. Ces travaux de regroupement ont pour objectif de permettre 
l’identification de groupes de piézomètres témoignant de comportements homogènes au sein de 
l’aquifère rhénan. Pour ce faire, trois méthodes ont été mises en œuvre dans le cadre de GRETA : 
(i) regroupement basé sur la corrélation entre les chroniques piézométriques, (ii) regroupement 
basé sur des caractéristiques numériques décrivant la dynamique des chroniques 
piézométriques, (iii) regroupement basé sur des caractéristiques hydrodynamiques décrivant la 
physique du comportement de la nappe (aussi appelés “indicateurs” dans la suite de ce rapport), 
calculés à partir des chroniques piézométriques.  
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Figure 1 Carte de la zone d’étude : délimitation de l'aquifère dans la zone étudiée et contexte hydrologique 
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2 DONNEES DISPONIBLES  
Les chroniques de piézomètres surveillant l’aquifère rhénan ont été fournies par l’APRONA 
(Association pour la Protection de la Nappe d’Alsace) pour les ouvrages français et par le LUBW 
(Landestalt für Umwelt, Messungen and Naturschutz Baden-Württembergௗ: oƯice de 
l’environnement du Land allemand du Bade-Wurtemberg) pour les chroniques du réseau de suivi 
piézométrique allemand. Quelques autres chroniques supplémentaires ont été extraites de la 
base ADES pour le côté français, par la suite (voir plus bas). 

Le jeu de données piézométriques initial est ainsi composé de 1888 chroniques piézométriques 
dont 1375 du côté allemand et 513 du côté français. 9 chroniques sur 10 suivent la nappe au 
moins jusqu’à l’année 2023, et environ 2/3 des chroniques débutent en 1980 ou avant. C’est sur 
cette base qu’a été établie une « période ciblée » (pour les travaux de regroupements de 
chroniques piézométriques) s’étendant des années 1980 à 2023 inclusivement. 

Pour le regroupement basé sur la corrélation entre les chroniques piézométriques, 1244 
chroniques ont été utilisées comme jeu de données principal de départ (pour la première session 
de clustering de ce type) parmi l’ensemble des 1888 chroniques disponibles. Ce nombre réduit 
de piézomètres a été obtenu en appliquant un critère de disponibilité suƯisante en données sur 
la période ciblée (janvier 1980 à janvier 2024)ௗ: seules les chroniques (préalablement agrégées en 
niveaux piézométriques moyens mensuels) ayant une valeur mensuelle calculable disponible (c.-
à-d. au moins une observation piézométrique dans le mois) pour au moins 2/3 des mois de la 
période ciblée, ont été retenues.  

Dans une seconde phase, une fois un premier regroupement réalisé à partir de cette sélection 
principale de chroniques « longues », une sélection complémentaire a été définie en 
assouplissant le critère pour n’exiger des valeurs mensuelles que pour au moins 1/5 des mois de 
la même période ciblée. Cette seconde sélection, intégrant des chroniques « moins longues », a 
ainsi permis de considérer +364 autres chroniques (toujours parmi l’ensemble des 1888 
chroniques disponibles de départ), portant à 1608 le nombre de chroniques finalement 
considérées dans les traitements de regroupements basés sur la corrélation. Et dans la dernière 
phase lors de la synthèse des trois approches (i-iii), 14 chroniques supplémentaires ont été 
intégrées à la liste finale, pour considérer quelques chroniques valorisées par les autres 
approches de regroupement ou dans le travail parallèle de calcul d’indicateurs hydrogéologiques 
(Action Greta 3.3., analyse de l’évolution historique du niveau de la nappe : calcul des tendances 
et des ruptures dans les séries piézométriques).  

Le nombre de chroniques finalement retenues dans le regroupement final (cf. 5 SYNTHESE DES 
RESULTATS : Sectorisation de l’aquifère rhénan en grands ensembles) est ainsi de 1622 
chroniques, réparties comme suit : 243 chroniques issues du jeu de données fourni par l’APRONA 
+ 27 chroniques complémentaires extraites d’ADES1, soit un sous-total de 270 chroniques pour 
le côté français ; et 1352 chroniques fournies par le LUBW pour le côté allemand. 

Pour le regroupement basé sur les caractéristiques numériques décrivant la dynamique des 
chroniques, 1 633 piézomètres de la vallée du Rhin supérieur (Allemagne et France) ont été 
compilés à partir de 1913 (les 1622 chroniques finalement retenues plus 11 chroniques 

 
1 S’il y a peu de chroniques piézométriques qui proviennent directement d’ADES pour ce travail, c’est 
parce qu’il a été choisi de prioriser, pour un piézomètre français donné, les données provenant d’APRONA 
afin de garantir leur complétude. 
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uniquement utilisées pour cette méthode). Les stations de mesure dont la durée 
d'enregistrement était inférieure à 10 ans ont été exclues.  

Pour le regroupement basé sur les indicateurs hydrodynamiques calculés aux piézomètres, le 
nombre de chroniques utilisées correspond au nombre de chroniques présentant des données 
suƯisantes au calcul des indicateurs. Ainsi, les chroniques de 971 piézomètres ont été utilisées 
dans ce test de regroupement.  

La carte ci-dessous (Figure 2) présente la répartition des piézomètres correspondant aux 1622 
chroniques finalement considérées (tout ou en partie) dans les travaux de regroupement réalisés 
par les trois méthodes.  

Cette carte met en évidence les densités de points contrastées entre les deux pays, 
considérablement plus dense en Allemagne qu’en France d’une part, et selon la proximité du Rhin 
d’autre part, avec des densités de points moyennes de l’ordre de 0,1 point par km2 du côté 
français versus 0,7 point par km2 du côté allemand ; soit un réseau 8 fois plus dense pour la rive 
droite (est) du Rhin2. Mais si on se concentre sur les terrains à ≤ 5km du linéaire hydrographique 
du Rhin, la densité de points sur la rive est (côté allemand) s’avère presque deux fois plus forte 
relativement à la densité moyenne sur la zone allemande, (1,3 point par km2) tandis qu’elle 
demeure d’environ 0,1 point par km2 sur la rive ouest (côté français).  

Cet aspect sur la densité des points a son importance dans l’interprétation des résultats de 
regroupement. La répartition des piézomètres considérés par chaque méthode est présentée 
plus bas, dans les sections de ce rapport qui y sont dédiées. 

 
2 Densités estimées à partir des 1622 points de localisation des chroniques piézométriques retenues pour 
les traitements de regroupements basés sur la corrélation, en considérant le polygone de délimitation du 
modèle LOGAR, qui contient la vaste majorité de ces points (afin d’éviter de sous-estimer la densité en 
incluant des surfaces éloignées des points d’intérêt. Seulement 34 points (hors LOGAR) ont été ignorés. 
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Figure 2 Localisation des points des 1622 chroniques piézométriques considérées 
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3 METHODES  
3.1 Regroupement basé sur la corrélation entre les chroniques 

piézométriques  
La première approche utilisée pour regrouper les piézomètres se concentre sur la comparaison 
des séries de niveaux piézométriques, sans considérer d’indicateurs calculés à partir de celles-
ci ni autres informations contextuelles, du moins en ce qui concerne les étapes de traitements 
statistiques. Ce n’est que lors des itérations d’expertise manuelle des regroupements calculés 
automatiquement, que diverses informations pertinentes sont considérées en complément afin 
d’ajuster les résultats. 

Une approche de clustering par algorithme des k-médoïdes a été choisie pour cela, en raison de 
ses avantages, notamment : 

 Le clustering par k-médoïdes apparaît préférable au regroupement hiérarchique, par son 
principe fondamental qui cherche à identifier la série « médoïde » la plus représentative 
de chacun des groupes, plutôt que de créer un arbre hiérarchique complexe délicat à 
diviser en groupes ; 

 L’algorithme des k-médoïdes est préféré à celui des k-means en raison de sa moindre 
sensibilité face aux individus extrêmes et aussi parce qu’il utilise des individus réels, au 
lieu de points fictifs de coordonnées moyennes, comme représentants des groupes ; 

 L’algorithme des k-médoïdes produit des résultats stables d’une exécution à la suivante, 
contrairement à celui des k-means qui, à cause de la nature aléatoire des configurations 
initiales testées durant sa phase d’optimisation, propose des regroupements qui peuvent 
changer notamment en termes de numérotation des groupes. Or, la reproductibilité des 
résultats est une caractéristique avantageuse en pratique. 

 La fonction pam() — de l’anglais Partitioning Around Medoids (PAM) — disponible dans le 
langage R pour appliquer cet algorithme accepte en entrée une matrice de dissimilarité 
(ou autrement dit de « distances ») ce qui permet de baser le regroupement sur une 
mesure de dissimilarité au choix, non limitée à la distance euclidienne classique comme 
c’est le cas dans l’algorithme k-means par exemple. 

Ce dernier point est justement un avantage clé de l’algorithme des k-médoïdes : il a permis de 
d’utiliser une mesure de « distance » entre chroniques basée sur leur corrélation. Or, cette mesure 
de distance est intéressante car elle se base sur une notion intuitive de mesure de 
ressemblance des fluctuations entre deux séries temporelles x(t) et y(t) telle qu’on aurait 
tendance à l’évaluer manuellement par la préparation d’un graphique XY, l’ajustement d’une 
droite de régression linéaire et enfin l’extraction des résultats de l’ajustement (en particulier le 
coeƯicient r). 

De plus, les distances de type corrélation ne dépendent ni de l’écart de position moyenne entre 
x et y ni de l’amplitude globale de x ou y. En eƯet, un écart de position moyenne impactera 
l’ordonnée à l’origine de la droite de régression linéaire tandis qu’un contraste d’amplitude 
impactera sa pente, mais ni l’un ni l’autre n’impactera le coeƯicient de corrélation r en tant que 
tel. Le calcul ne requiert donc pas obligatoirement de normalisation préalable des données. 
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La distance de type corrélation la plus classique (et attendue intuitivement) est basée sur le bien 
connu « coeƯicient de corrélation de Pearson » (dont le symbole est : r minuscule) et la formule 
pour calculer cette distance entre les séries temporelles x et y se résume tout simplement par : 

𝑑(𝒙, 𝒚) = 1 − 𝑟 

La matrice de distances requise par la fonction pam() est préparée comme suit : 

1. Préparation de séries temporelles à pas de temps mensuel, en calculant le niveau 
piézométrique moyen pour chaque mois avec ≥ 1 donnée ; 

2. Réduction des séries aux temps (dates) inclus dans la période ciblée (de janvier 1980 à 
janvier 2024) afin de concentrer la suite des traitements sur cette période récente la plus 
fournie en données ; 

3. Standardisation3 des séries mensuelles (facultative à ce stade : faite afin de faciliter la 
superposition visuelle de plusieurs courbes dans les graphiques générés plus tard) ; 

4. Création d’une matrice de m lignes (pas de temps) * n colonnes (séries) par fusion de 
toutes les séries mensuelles alignées temporellement  « matrice des séries » ; 

5. Calcul d’une « matrice de distances » à partir de la matrice des séries, en utilisant des 
fonctions matricielles permettant un calcul rapide malgré le grand nombre de paires 
d’individus (et donc de distances) à évaluer (>1 000 000). Cette matrice de distances peut 
être obtenue en calculant d’abord la « matrice de corrélations » R, puis en appliquant la 
formule présentée plus haut mais ici en contexte matriciel : D = 1 – R. La matrice D ainsi 
obtenue a n lignes * n colonnes (où n = le nombre de séries) et rassemble les distances 
calculées entre toutes les paires de séries. Elle est symétrique : D[i, j] = D[j, i] ; où i et j sont 
des nombres entiers positifs ≤ n. 

Une fois la matrice de distances D préparée, la fonction de clustering pam() est appelée en 
utilisant cette matrice comme principal argument d’entrée, et un nombre de clusters k spécifié 
manuellement. La fonction renvoie comme résultats essentiels la liste des k individus retenus 
comme médoïdes optimaux par l’algorithme, ainsi qu’une liste avec l’identifiant du cluster 
attribué à chacune des n séries piézométriques. 

Quelques remarques sur cet algorithme « non supervisé » de clustering par k-médoïdes : 

 L’algorithme par k-médoïdes, puisqu’il se base sur la comparaison des données entre 
paires d’individus, ici des séries temporelles, requiert des données disponibles à des 
mois communs. Il n’est donc pas possible, avec l’algorithme par k-médoïdes en tant que 
tel, de regrouper des séries sans période de suivi concomitante. C’est pour cette raison 
qu’un critère de disponibilité minimale des données ≥ 2/3 des mois de la période ciblée a 
été utilisé pour constituer le jeu de données principal pour lancer le premier appel de la 
fonction de clustering pam(). En eƯet, en exigeant une couverture temporelle ≥ p % des 
mois de la période ciblée, on s’assure que toutes les paires de séries aient ≥ (2p – 100) % 
de mois en commun (soit a minima 1/3 de mois en commun avec le critère utilisé ici). 

L’ajout ultérieur de séries plus courtes dans les clusters préalablement formés est possible, mais 
il ne se fait plus par un simple appel de la fonction pam(). Plutôt, chaque série courte est 
comparée aux médoïdes déjà définis et rattachée au cluster pour lequel la corrélation au 

 
3 Une transformation en séries centrées réduites robuste basée sur la médiane et l’écart absolu médian 
(plutôt que la moyenne et l’écart type) est utilisée car moins sensible aux éventuelles valeurs extrêmes / 
aberrantes qui n’auraient pas été détectées et retirées. 
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médoïde est maximale, à condition que cette corrélation soit assez forte. Si les corrélations entre 
la série et les médoïdes sont toutes trop faibles, la série est soit définitivement écartée, soit 
placée dans des groupes créés expressément pour rassembler les cas singuliers voire anormaux. 

Un module pour le post-traitement des résultats de clusterings et toujours basé sur la corrélation 
entre séries, a été développé durant le projet. Ce module a permis de retravailler les clusters… : 

 tantôt afin de trouver une meilleure série médoïde (plus longue et continue tout en 
demeurant bien centrale dans le cluster) ; 

 tantôt afin de définir un nouveau cluster à partir d’une série choisie à dire d’expert en 
raison de sa signature assez distincte par rapport à celle des médoïdes existants, à la fois 
en termes de dynamique et de répartition spatiale ; 

 tantôt afin d’écarter des séries peu corrélées avec les autres (montrant une évolution 
piézométrique singulière, voire anormale) ; 

 mais avant tout pour trouver à quel médoïde existant et donc à quel cluster chacune des 
séries ajoutées ressemble le plus. 

Pour aider à attribuer un cluster à une série sans appeler le clustering par k-médoïdes, le module 
de post-traitement prépare une matrice des corrélations (r) entre les séries (lignes) et les 
médoïdes existants (colonnes). Et ici, contrairement à l’algorithme PAM, ce post-traitement 
n’exige pas que le tableau soit rempli : des vides (r = NA : non calculable) sont tolérés. La matrice 
est ensuite parcourue afin d’identifier, pour chaque série, quel est le cluster oƯrant la meilleure 
corrélation, c.-à-d. le r maximal parmi les r calculables (non NA) et ≥ (+)0.6. Ce cluster placé en 
tête de la liste décroissante des coeƯicients de corrélation r calculés pour la série, est appelé 
« premier voisin » dans ce module. C’est donc en récupérant cette information sortante, qu’on 
peut facilement attribuer une première proposition (provisoire) de cluster aux séries plus courtes 
sans devoir utiliser clustering par k-médoïdes. 

Une remarque sur la distinction entre le cluster attribué par l’algorithme PAM versus celui 
proposé via le « premier voisin » fourni par le module de post-traitement. L’algorithme PAM 
optimise le partitionnement de manière à maximiser la diƯérence entre clusters tout en 
minimisant la variabilité au sein de chaque cluster. Il y a donc une notion de compromis dans cet 
algorithme, ce qui fait que certaines séries peuvent être placées dans un cluster alors qu’elles ont 
une corrélation plus élevée avec le médoïde d’un ou plusieurs autres clusters. Si on souhaite 
conserver au moins partiellement les résultats de ces compromis faits par l’algorithme PAM lors 
des phases ultérieures de post-traitement de ses résultats, il faut donc éviter d’utiliser 
systématiquement les indications fournies via le « premier voisin » (par simples corrélations 
calculées entre la série et les médoïdes) pour remplacer toutes les attributions de clusters. Il est 
en eƯet préférable, en général, de retenir en priorité le cluster attribué par l’algorithme PAM. 

Dans la mise en œuvre pour GRETA, à l’issue de la première itération de post-traitement des 
résultats du PAM, le cluster proposé par l’information du « premier voisin » n’a donc été attribué 
qu’aux 378 séries plus courtes nouvellement ajoutées à la liste des individus à regrouper (soit les 
cas sans attribution de cluster par l’algorithme PAM). Les autres chroniques (1244) conservent 
leur cluster préalablement assigné.  

En pratique, l’approche mise en œuvre pour produire les résultats basés sur la corrélation entre 
les chroniques est séquentielle et récursive, avec comme objectif de former des clusters 
explicables en termes hydrogéologiques. On choisit volontairement un faible nombre de 
clusters (k) au départ pour établir les principales diƯérences dans la dynamique des nappes. Les 
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séries suƯisamment longues du jeu de données sont considérées. Une première itération de 
clustering par PAM est appliquée. On regroupe les clusters ayant des explications communes ou 
similaires. On tente ensuite de nouvelles itérations de clusterings à l’intérieur des groupes formés 
jusqu’à ce qu’il ne soit plus possible de trouver des explications pour justifier les sous-groupes 
suggérés par la nouvelle itération. Une fois les principaux clusters (et leurs médoïdes) définis par 
ces itérations, les résultats de ces dernières sont fusionnés et ensuite retravaillés avec le module 
de post-traitement, là aussi en plusieurs itérations. La mise en œuvre plus précise de cette 
approche est décrite plus bas dans la présentation des résultats. 

 

3.2 Regroupement basé sur les caractéristiques dynamiques des 
chroniques piézométriques  

Tableau 1 Aperçu des caractéristiques (dynamic features) utilisées pour caractériser les chroniques piézométriques. 
Les caractéristiques couvrent diƯérents aspects de la variabilité temporelle, de la saisonnalité, des événements 
extrêmes et des particularités structurelles des piézomètres 

Nom de la 
caractéristique (Abr.) 

Objectif/Description 

Range Ratio (RR) 
Détection des signaux superposés à longue période, également sensible aux 
valeurs aberrantes, calculée comme le rapport entre l'amplitude moyenne annuelle 
et l'amplitude totale [13] 

Skewness (Skew) 
Limitation, inhomogénéités, valeurs aberrantes, asymétrie de la distribution de 
probabilité. 

Annual Periodicity (P52) 
Intensité du cycle annuel, calculée par corrélation (Pearson) de la périodicité 
annuelle moyenne (52 semaines) avec la série chronologique complète [13] 

SDdiff Variabilité brusque (« flashiness »), fréquence et rapidité des variations à court 
terme, calculées comme l’écart-type des premières dérivées de la série [13]. 

Longest Recession 
(LRec) 

Phases de longue baisse, mesurée comme la plus longue séquence sans remontée 
du niveau des eaux souterraines [13] 

Jumps 
Inhomogénéités ou ruptures (changements structurels), reflétant partiellement 
aussi la variabilité, calculées comme le maximum absolu et standardisé de la 
différence de moyenne entre deux années consécutives [13]. 

Seasonal Behaviour (SB) 
Position du maximum dans le cycle annuel, comparée à la saisonnalité moyenne 
attendue (minimum en septembre, maximum en mars) [13]. 

Median (Med01) 
Indice de limitation, médiane après mise à l'échelle sur [0,1], mesure statistique 
standard dérivée de [4]. 

High Pulse Duration 
(HPD) 

Durée moyenne des niveaux des eaux souterraines dépassant le 80e centile de non-
dépassement, pour plus de détails, voir [11], adapté de [4] 

 

L’objectif de l’approche de regroupement basé sur les caractéristiques décrivant la dynamique 
des chroniques piézométriques (Dynamic Feature Clustering) est de regrouper de manière 
robuste les séries piézométriques en fonction de leurs propriétés dynamiques, afin d'identifier 
des évolutions représentatives pour la modélisation, les prévisions et une meilleure 
compréhension du système, indépendamment de la longueur des données ou des éventuelles 
lacunes dans les séries piézométriques. 
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Le choix s’est porté sur le regroupement par caractéristiques dynamiques car cette méthode 
permet le traitement de données de diƯérentes périodes et longueurs, avec de données 
manquantes ou bruitées. Contrairement aux approches de regroupement directes, cette 
méthode permet d'utiliser des ensembles de données incomplets. Ainsi, les stations de mesure 
récemment mises en place et celles qui n'ont pas été utilisées depuis longtemps ont pu être 
incluses dans l'analyse. 

Pour l'étude, un ensemble complet de données comprenant 1 633 piézomètres avec des données 
hebdomadaires (à minima) dans le fossé rhénan supérieur (Allemagne et France) a été compilé à 
partir de 1913. Les stations de mesure dont la durée d'enregistrement était inférieure à 10 ans (74 
stations) n’ont pas été retenues. 

L'étape centrale de la préparation des données consiste à transformer les séries chronologiques 
en un ensemble de caractéristiques descriptives (appelées « features ») qui permettent de 
caractériser les aspects essentiels de la dynamique. Ces caractéristiques sont 
conceptuellement proches des signatures hydrologiques, largement utilisées en hydrologie de 
surface. Cependant, comme les hydrogrammes des eaux souterraines présentent des 
caractéristiques diƯérentes de celles des écoulements de surface, des caractéristiques 
appropriées ont été rigoureusement sélectionnées, adaptées ou nouvellement développées. 

À partir d'une liste initiale de plus de 50 caractéristiques potentielles, 13 caractéristiques ont 
finalement été retenues. La sélection s'est basée sur une combinaison de tests de plausibilité 
visuelle (« Visual Skill Test »), d'analyses de robustesse concernant la qualité des données (par 
exemple, lacunes, bruit, longueur) et d'analyses de corrélation afin d'identifier et réduire les 
redondances. Les caractéristiques utilisées comprennent des mesures statistiques classiques 
(par exemple, asymétrie, écart type), des paramètres dynamiques (par exemple, indices de 
variabilité rapide, durée des phases de vidange), ainsi que des caractéristiques liées à la 
périodicité, telles que l’intensité de la composante annuelle ou le degré de saisonnalité. 

Les caractéristiques ont été normalisées dans l’intervalle [0,1] afin de permettre une mise à 
l'échelle uniforme pour le clustering. Une fois ces étapes terminées, chaque chronique 
piézométrique se présente sous la forme d'un vecteur multidimensionnel qui décrit ses 
caractéristiques dynamiques sous une forme compacte. Ces vecteurs de caractéristiques 
constituent la base de la méthode de clustering détaillée ici.  

Une procédure itérative a été mise en œuvre afin de déterminer le nombre optimal de clusters. 
DiƯérents algorithmes de clustering (KMeans, Birch, Agglomerative Clustering, Spectral 
Clustering) ont été testés pour une plage définie de nombres de clusters possibles (par exemple, 
de 2 à 14). Les résultats ont ensuite été évalués à l'aide de plusieurs indices de validation interne, 
notamment l'indice de silhouette, l'indice de Calinski-Harabasz, l'indice de Dunn et l'indice de 
Ratkowski-Lance. L'évaluation a été eƯectuée par un classement des scores, permettant une 
sélection objective du nombre optimal de clusters. Le regroupement final a été eƯectué avec 
l’algorithme KMeans. Outre l'appartenance de chaque chronique à un cluster, la distance 
euclidienne de chaque point de mesure a été calculé par rapport au centroïde du cluster qui lui a 
été attribué. Cette valeur calculée a ensuite été utilisée pour évaluer l'homogénéité intra-cluster 
et pour la pondération visuelle.  
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3.3 Regroupement basé sur les indicateurs hydrodynamiques 
calculés au piézomètre et algorithmes de science des données 
(data science)  

Cette méthode se base sur l’utilisation : 

-  d’un ensemble d’indicateurs hydrodynamiques de la nappe, calculés pour chaque 
piézomètre lorsque la chronique piézométrique correspondante le permet,  

- de variables géographiques : l’épaisseur de la zone non saturée, les données de 
couverture et d’utilisation des sols issue de la campagne 2018 du programme CORINE 
(Coordination of Information on the Environment, Corine Land Cover), le réseau 
hydrographique de surface (cours d’eau recensés dans le cadre de la Directive Cadre sur 
l’Eau (DCE), 

- d’un enchaînement d’algorithmes de science des données. 

 

Données d’entrée propre à la méthode 

Les calculs et la description des indicateurs produits sont disponibles dans le rapport BRGM/RP-
74683-FR [2]. Les indicateurs suivants ont été calculés sur les chroniques piézométriques le 
permettant :  

- Les tendances significatives (test de Mann-Kendall modifié ; [3, 5, 6]) et les signes des 
tendances sur les variables suivantes : niveaux moyens, minimum et maximum, recharge 
apparente et durée de la vidange apparente, à partir du signe de la pente de Sen [11].  

- Les ruptures d’homogénéité significative et dates associées (test statistique de Pettitt; [8]) 
sur les mêmes cinq variables mentionnées ci-dessus.  

- Les dates médianes d’occurrence et les écarts interquartiles des basses eaux. Ces deux 
indicateurs traduisent la saisonnalité des minima piézométriques et leur variabilité. 

- Les jours pour lesquels est observée une variation intra-journalière des niveaux 
piézométriques plus importante que la variation entre deux jours consécutifs. 

- Les énergies des diƯérentes composantes fréquentielles du signal correspondant au 
“poids” de diƯérentes gammes de fréquences dans le signal piézométrique. Les gammes 
pour lesquels l’indicateur est calculé sont : < 1 an, 1-5 ans, 5-12 ans, 12-24 ans et > 24 
ans. Ces gammes de fréquence ont en fait un « sens climatique » puisqu’elles sont 
induites par des processus climatiques diƯérents [1].  

- Dans le but également de synthétiser l’information sur les contributions des diƯérentes 
gammes de fréquences dans le signal piézométrique, un indicateur d’énergie a été 
développé et construit à partir :  

o D’une moyenne pondérée des pourcentages d’énergie par gamme de fréquences 
pour la série piézométrique analysée (pondération par des coeƯicients croissants 
entre la gamme la plus haute fréquence (< 1 an) et la plus basse fréquence 
(>  24  ans)) ; 

o D’une moyenne pondérée pour un cas fictif où 100% de l’énergie serait sur la 
gamme la plus basse fréquence (> 24 ans) et qui servira de valeur référence afin 
d’obtenir un indicateur dont les valeurs oscillent entre 0 et 1 ; 
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Un ratio entre la moyenne pondérée des pourcentages d’énergie pour la série 
piézométrique analysée et la moyenne pondérée du cas fictif est ensuite réalisé. C’est ce 
ratio qui constitue l’indicateur et ses valeurs s’étendent entre 0 et 1. Il permet en une 
valeur de résumer l’information de l’analyse spectrale et donc le caractère inertiel ou 
réactif de la nappe. 

- Les coeƯicients de corrélation entre les chroniques piézométriques et les pluies eƯicaces 
pour informer sur la force de la relation entre la piézométrie et la climatologie locale.  

- Le temps de ½ tarissement de l’exponentielle utilisée pour calculer la pluie eƯicace 
moyenne optimale. Ce temps caractéristique est assimilable au temps de ½ tarissement 
de la nappe, et donc informatif sur l’inertie de la nappe captée due aux propriétés 
d’écoulement et de stockage de l’aquifère. 

- Le décalage temporel entre le signal climatique et le signal hydrogéologique utilisée pour 
calculer la pluie eƯicace moyenne optimale. Ce décalage est un informatif sur la rapidité 
ou non de l’atteinte de la nappe par les pluies eƯicaces contribuant à l’infiltration. 

- Les coeƯicients de corrélation et le décalage temporel permettant d’obtenir la meilleure 
corrélation entre série piézométrique et série de débit du Rhin (total et de base).   

 

- A ces indicateurs ont été ajoutées 4 variables géographiques relatives au réseau 
hydrographique de surface : le nombre de cours d’eau et le linéaire des cours d’eau se 
trouvant dans des zones circulaires de 300 m et 500 m de diamètre centrées sur chaque 
piézomètre. Ces 4 nouvelles variables ont pour but de permettre la prise en compte du 
réseau hydrographique dans les tests de regroupement, de manière extrêmement 
schématique toutefois car la nature précise de l’influence sur un piézomètre des cours 
d’eau proches n’est pas connue. 

 

Description de la séquence algorithmique utilisée 

La chaîne de traitement décrite ci-dessous vise à regrouper automatiquement des points de 
mesure hydrogéologiques (forages, piézomètres, sources, etc.) tout en mettant en lumière les 
variables qui gouvernent le plus ces regroupements. Elle combine trois familles d’algorithmes : 
réduction de dimension, estimation d’importance des variables via un algorithme de prédiction 
par gradient boosting, et clustering fondé sur la densité. L’enchaînement des étapes et des 
diƯérents algorithmes est représenté de manière graphique sur les Figure 3 et Figure 4 . 

 a. Pré-traitement des variables 

La procédure commence par une standardisation systématique des variables quantitatives 
(centrage-réduction) et par un encodage numérique cohérent des variables qualitatives (one-hot 
encoding avec gestion des poids). Cette étape garantit que toutes les grandeurs sont 
comparables et qu’aucune unité ou plage de valeurs ne domine artificiellement les calculs 
ultérieurs. 

 b. Première réduction de dimension avec UMAP 

Le jeu initial, souvent très hétérogène, est projeté dans un espace à trois composantes au moyen 
de l’algorithme UMAP (Uniform Manifold Approximation & Projection) (arXiv). UMAP préserve la 
structure globale du nuage tout en oƯrant une représentation compacte que l’on pourra visualiser 
pour contrôler l’allure des groupes naissants. 
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 c. Hiérarchisation des variables par CatBoost 

Sur ces trois composantes, on entraîne ensuite l’algorithme de prédiction CatBoost, un gradient 
boosting conçu pour traiter correctement les variables catégorielles (arXiv). Pour chaque 
composante UMAP, le modèle fournit un score d’importance pour chacune des variables 
d’origine : plus le score est élevé, plus la variable a contribué à la projection. Les variables dont 
l’importance moyenne est négligeable sont alors écartées, ce qui réduit le jeu initial à un sous-
ensemble explicatif plus compact. 

 d. Deuxième passe UMAP + CatBoost pour aƯiner l’interprétation 

Le jeu filtré passe à nouveau dans UMAP afin de générer trois composantes finales centrées sur 
les variables réellement déterminantes. Un second CatBoost est ajusté, non plus pour filtrer, 
mais pour expliquer ces nouvelles composantes et fournir une lecture plus claire des 
mécanismes de regroupement. 

 e. Clustering avec HDBSCAN 

Les points ainsi décrits en 3-D sont regroupés par HDBSCAN, une version hiérarchique et densité-
dépendante de DBSCAN (joss.theoj.org). L’algorithme détecte automatiquement les clusters de 
forme libre tout en laissant certains points non assignés (« bruit »). Trois hyper-paramètres pilotent 
son comportement : 

1. min_cluster_size définit la taille minimale d’un groupe ; 

2. min_samples règle la sévérité vis-à-vis des valeurs aberrantes ; 

3. cluster_selection_epsilon permet de fusionner ou de séparer les petits ensembles 
voisins. 

Une recherche systématique sur grille explore de multiples combinaisons de ces paramètres afin 
de trouver, pour chaque jeu de variables, la configuration la plus équilibrée. 

 f. Évaluation de la qualité des regroupements 

Chaque solution est évaluée sous trois angles : 

Volet 
d’évaluation 

Outils mis en œuvre Objectif 

Qualité 
interne 

- Silhouette [10]  

- DBCV (Density-Based Clustering 
Validation Index) [7] 

Mesurer simultanément la compacité 
interne et la séparation entre clusters, en 
tenant compte de la densité quand c’est 
pertinent. 

Inspection 
visuelle 

- Nuage UMAP 3-D interactif- 
Projection RADVIZ 2-D 

Vérifier la cohérence géométrique 
globale et repérer les possibles 
mélanges ou outliers. 

Analyse 
descriptive 

Statistiques (médianes, IQR, 
corrélations) par cluster 

Comprendre la signature 
hydrogéologique de chaque groupe et 
mettre en évidence les variables 
discriminantes. 
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Figure 3 Description de la séquence algorithmique pour la méthode de regroupement à partir d'indicateurs 
hydrodynamiques et d'algorithmes de science de la donnée, partie 1/2 

 

Figure 4  Description de la séquence algorithmique pour la méthode de regroupement à partir d'indicateurs 
hydrodynamiques et d'algorithmes de science de la donnée, partie 2/2 
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 g. Sélection et interprétation finales 

La solution retenue est celle qui maximise à la fois les indices Silhouette et DBCV tout en 
conservant le taux de points classés le plus élevé possible. On obtient ainsi un découpage 
robuste, limité en points aberrants, et facilement interprétable en termes de processus 
hydrogéologiques). 

 

En résumé 

1. UMAP fournit une réduction de dimension rapide et fidèle, essentielle pour la 
visualisation et l’entrée de HDBSCAN. 

2. CatBoost sert de passerelle entre les variables brutes et l’espace réduit : il quantifie 
objectivement l’influence de chaque variable. 

3. HDBSCAN détecte des groupes sans imposer de nombre prédéfini et laisse la liberté de 
considérer certains points comme du bruit. 

4. Le bouclage UMAP → CatBoost → filtrage épure progressivement l’information, ce qui 
facilite l’interprétation métier. 

5. La combinaison des indices Silhouette et DBCV garantit que la solution finale est non 
seulement compacte et bien séparée, mais aussi cohérente avec la distribution réelle des 
densités. 

Ainsi, cette chaîne aboutit à des groupes physiquement pertinents tout en restant adossée à 
des méthodes d’intelligence artificielle éprouvées.  
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4 RESULTATS par méthode 
4.1 Regroupement par corrélation 
L’approche séquentielle et récursive décrite plus haut (cf. section sur les Méthodes) a été mise en 
œuvre en suivant la démarche ci-dessous afin de produire les résultats basés sur la corrélation 
entre les chroniques : 

D’abord pour la production d’un « Clustering Expert version 1 » (en 2024) par PAM sans utilisation 
d’un module de post-traitement (alors inexistant) : 

1. Sélection des 1244 séries du jeu de données de départ ayant assez de données 
2. Premier clustering de l’ensemble des points sélectionnés, par k-médoïdes, avec k = 6 : on 

obtient 3 clusters de points proches du Rhin et 3 autres clusters de points majoritairement 
à distance du Rhin. On définit ainsi deux grands groupes explicables : Rhin (influence 
forte du Rhin) vs Non-Rhin (influence faible à nulle du Rhin). 

3. Ce faisant, on en profite pour écarter temporairement 40 points dont la localisation n’est 
pas cohérente avec l’explication donnée à leur cluster. Les points éloignés du Rhin et 
pourtant inclus dans le groupe « Rhin » ou, à l’inverse, les points très proches du Rhin mais 
inclus dans le groupe « Non-Rhin », sont ainsi mis à l’écart pour le moment  groupe 
« Entre-deux » (‘MISC_in_betweens’). 

4. Sous influence proximale du Rhin (A) : Un clustering de la sous-sélection des 545 points 
du groupe « Rhin » (famille ‘A’) est ensuite réalisé (k = 6). Mais avec 6 clusters, 
l’interprétation de la distribution spatiale n'est pas aisée. Seul un de ces 6 clusters se 
distingue nettement du reste : un cluster de points localisés en amont du barrage agricole 
de Kehl-Strasbourg, dont la dynamique piézométrique particulière s’expliquerait par les 
eƯets de ce barrage  groupe « Rhin Kehl » (‘RR_A6’). Les points des 5 autres clusters 
sont mélangés dans un groupe « Rhin autres » (‘RR_Aothers’). 

5. Hors influence proximale du Rhin (B) : Un clustering de la sous-sélection des 659 points 
du groupe « Non-Rhin » (famille ‘B’) est ensuite eƯectué (k = 6). Des explications 
hydrogéologiques sont trouvées pour 3 des 6 clusters alors obtenus (B2, B5 et B6 ; soit 
222 points). Les 437 points des 3 autres clusters (B1, B3 et B4) sont mélangés pour 
constituer une sous-sélection « Bbis ». 

6. On eƯectue une autre itération de clustering par k-médoïdes (là encore avec k = 6) à partir 
de cette sous-sélection de points (famille ‘Bbis’). Seul un des clusters (‘Bbis2’) paraît 
explicable, par une influence estivale et une distribution spatiale surtout établie en 
Allemagne. Les points des 5 autres clusters (Bbis1 et Bbis3 à Bbis6) sont donc mélangés 
pour former un groupe « Non-Rhin autres » (‘PA_Bothers’). 

7. C’est ainsi que le Clustering Expert version 1, composé de 1244 chroniques, a été produit. 

Puis, en 2025, ces premiers résultats intermédiaires ont été améliorés, bonifiés, afin : 

 D’intégrer des séries piézométriques jusque-là ignorées car plus courtes ; 
 De gérer des cas particuliers jugés mal classés d’un point vue expert basé sur une analyse 

visuelle de la série par rapport aux autres membres du cluster attribué, sur les indicateurs 
calculés par l’outil, sur la localisation du point par rapport aux autres en tenant compte 
des clusters attribués aux points, etc. ; 
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 D’optimiser manuellement le choix du médoïde de certains clusters, notamment afin de 
s’assurer que le médoïde soit une série temporelle la plus représentative mais aussi la 
plus complète que possible, pour le cluster. 

L’intégration de 378 chroniques piézométriques plus courtes au jeu de données traité pour la 
production du « Clustering Expert version 2 » a été rendue possible en considérant un critère de 
remplissage des séries moins exigeant (remplissage ≥ 1/5 des mois dans la période ciblée 1980-
2024) (cf. section sur les Données disponibles). 

La démarche de production du « Clustering Expert version 2 » (en 2025) se résume comme suit : 

1. Post-traitement d’un tableau des séries avec leur cluster attribué par le Clustering Expert 
version 1 (ainsi que l’identification des médoïdes), pour obtenir de premiers résultats et 
tester l’outil de post-traitement. 

2. Ajout au tableau des 378 identifiants des séries « plus courtes », en leur attribuant un 
cluster fictif temporaire au nom quelconque (‘ADDING_less_dense’). 

3. Nouvelle exécution du module de post-traitement. On obtient entre autres résultats les 
identifiants des clusters voisins (c.-à-d. les mieux corrélés à la série). Le « premier voisin » 
est utilisé pour attribuer vraiment un cluster à chacun des séries « plus courtes ». 

4. Nouvelle exécution du module de post-traitement. On explore alors plus finement les 
résultats pour repérer les séries trop dissemblables (séries singulières, sans lien explicatif 
ni corrélation, pour la plupart). Celles-ci sont déplacées dans un nouveau groupe très 
hétérogène d’individus « aberrants » (‘MISC_outliers’)4 créé afin de retirer ces séries des 
groupes principaux (Figure 5). 

5. Quelques itérations supplémentaires de modifications au tableau d’entrée listant les 
séries, leur groupe associé et le médoïde désigné pour chaque groupe, afin d’améliorer 
encore marginalement les résultats : déplacement de séries dont l’appartenance aux 
familles Rhin ou Non-Rhin est peu claire  vers le groupe des « Entre-deux » entre Rhin et 
Non-Rhin (‘MISC_in_betweens’) ; choix d’une meilleure série médoïde, plus longue ; etc. 

6. Dernière exécution du module de post-traitement afin de produire les résultats finaux du 
« Clustering Expert version 2 » (tableaux, graphiques, fichiers SIG, …) et cartographie de 
ceux-ci. 

 

La Figure 5 ci-dessous illustre avec un exemple de série « aberrante » (point « 166/023-9 ») les 
étapes suivies pour déplacer ces séries dans le groupe dédié ‘MISC_outliers’. La série a d’abord 
été repérée dans un graphique montrant la composition du cluster attribué initialement (par PAM) 
à la série (ici = ‘PA_Bbis2’). Un graphique généré spécifiquement pour cette série a confirmé que 
c’était bien cette série qui déviait largement des autres courbes du groupe, en particulier de son 
médoïde ! En relançant le post-traitement après avoir déplacé la série dissemblable dans le 
groupe ‘MISC_outliers’, on obtient un groupe ‘PA_Bbis2’ plus homogène, sans déviation extrême. 
On voit enfin, dans le graphique inférieur droit, que la série du point « 166/023-9 » est à sa place 
dans ce groupe très hétérogène de séries singulières. 

 
4 Les séries composant le groupe ‘MISC_outliers’ ont été repérées principalement en examinant les 
résultats générés par le module de post-traitement. Une série a été considérée aberrante soit parce que sa 
courbe déviait trop dans un graphique présentant la composition du cluster lui étant attribué ; soit en raison 
d’autres particularités, ex. lorsque c’était le seul point associé à tel cluster dans les environs, avec un signal 
corrélé à aucun de ses voisins. 
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Figure 5 Exemple de série « aberrante » déplacée vers un groupe dédié lors du post-traitement des résultats du 
regroupement basé sur la corrélation (La courbe noire en avant-plan = le médoïde du groupe. Les autres courbes, en 
arrière-plan, ont des couleurs aléatoires ; abréviations : cf. Annexe 150) 

La carte suivante (Figure 6 et Figure 7) présente une vue cartographique des résultats finaux du « Clustering Expert 
version 2 » (basé essentiellement sur la corrélation entre les chroniques). On distingue assez nettement la plupart des 
7 groupes principaux. La légende ( 

Tableau 3) qui accompagne la carte décrit chaque groupe avec l’explication hydrogéologique pour 
chacun d’eux. Une notation de type « CB_# » est utilisée dans la suite de ce rapport pour référer 
aux clusters basés sur les corrélations (« Correlation Based »).  
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Le Tableau 2 ci-dessous, quant à lui, décrit la cohérence et l’homogénéité du contenu de chaque 
groupe par des statistiques calculées à partir des coeƯicients de corrélation (r) entre les N séries 
du groupe et la série médoïde (de référence) du groupe. On constate ainsi que : 

 La plupart des groupes principaux (CB_1 à CB_4 et CB_6) sont composés de séries qui 
sont presque toutes dans leur « meilleur » groupe d’après les corrélations aux médoïdes 
(« % r best »), soit que : r (série, médoïde du groupe attribué) = MAX( r (série, médoïdes des 
groupes…) ). 

 Les deux groupes principaux montrant un moins bon indice de cohérence d’après les r 
sont les deux plus gros groupes, formés par le mélange des « autres points » d’abord 
placés dans plusieurs clusters lors des itérations de clustering par l’algorithme PAM : 
CB_5 (‘PA_Bothers’) et CB_7 (‘RR_Aothers’). Cette hétérogénéité n’est donc pas 
étonnante. 

 De même, l’indicateur « % r very low (r<0.5) » souligne la proportion plus élevée de séries 
très faiblement corrélées au médoïde dans le cas du groupe CB_7 (‘RR_Aothers’). Ce qui 
n’est pas étonnant non plus, car même si les séries piézométriques influencées par le 
Rhin se distinguent généralement bien des séries non influencées ou éloignées du Rhin, 
ce grand groupe de >650 individus rassemble une variété d’expressions locales de ces 
influences naturelles et/ou anthropiques que peut exercer le Rhin. Néanmoins, comme 
expliqué plus haut, il n’a pas semblé pertinent de conserver individuellement les 5 autres 
clusters « sous influence proximale du Rhin » formés à l’itération de clustering des points 
de la famille ‘A’, en raison de leur répartition spatiale diƯicile à expliquer par le contexte. 

 Le groupe CB_X0 (‘MISC_in_betweens’) contient une proportion encore plus élevée 
(63.5 %) de séries très faiblement corrélées au médoïde du groupe, dont 27.0 % de séries 
qualifiées de « trop mal corrélées » (r < 0.25). Ceci rappelle simplement que ce groupe est 
composite et qu’il devra être retravaillé (éclaté et redistribué) vers d’autres groupes plus 
tard (lors de la « Synthèse des résultats »). 

 Enfin, le groupe CB_XX (‘MISC_outliers’) sert à écarter et signaler quelque 25 séries qui 
apparaissent aberrantes, afin d’éviter qu’elles ne soient intégrées aux groupes principaux. 
L’hétérogénéité de ce groupe, soulignée notamment par la forte proportion de séries trop 
mal corrélées au médoïde (choisi automatiquement en phase de post-traitement pour 
représenter tant bien que mal ce groupe), est donc un constat cohérent avec la définition 
même de ce groupe. 

 Noter que ces deux groupes de séries à replacer ou écarter (CB_X0 et CB_XX) contiennent 
relativement peu d’individus (74 + 25 ≈ 100 chroniques piézométriques au total). 

 

Tableau 2 Cohérence et homogénéité du contenu de chaque groupe (CB_1-7, et CB_X) par des statistiques calculées 
à partir des coeƯicients de corrélation (r) entre les N séries du groupe et la série médoïde (de référence) du groupe 

Group 
% r best 
(= max r) 

% r high 
(r>0.8) 

% r high 
& best 

% r low 
 (r<0.8) 

% r very 
low (r<0.5) 

% r too bad 
(r<0.25) 

N points 
TOTAL 

n points r 
very low 

CB_1 100.0 61.7 61.7 38.3 4.9 0.0 81 4 
CB_2 98.3 53.8 53.8 46.2 5.1 0.0 117 6 
CB_3 97.8 52.7 52.7 47.3 3.3 0.0 91 3 
CB_4 95.9 71.0 69.4 29.0 3.6 0.0 193 7 
CB_5 56.9 49.2 37.2 50.8 4.6 0.3 325 15 
CB_6 95.7 54.3 54.3 45.7 8.7 2.2 46 4 
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CB_7 71.6 12.8 12.7 87.2 34.1 3.8 656 224 
CB_X0 56.8 6.8 6.8 93.2 63.5 27.0 74 47 
CB_XX 16.0 4.0 4.0 96.0 92.0 84.0 25 23 

Globally: 75.6 35.6 33.0 64.4 20.7 4.2 1608 333 
 

 

 

Figure 6 Carte des groupes obtenus par la méthode de regroupement basée sur la corrélation entre les chroniques 
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Figure 7  Carte des groupes obtenus par la méthode de regroupement basée sur la corrélation entre les chroniques : 
zooms sur les secteurs de Kehl et Breisach 
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Tableau 3 Caractérisation et description des 9 groupes obtenus par la méthode de regroupement basée sur la 
corrélation entre les chroniques franco-allemands 

N° groupe Caractérisation 
CB_1 

(PA_B2) 
n = 81 

Zone inertielle principalement au Nord du secteur allemand (environs de 
Rastatt – Karlsruhe) avec une épaisse zone non saturée (ZNS) presque 
partout >5 mètres et par conséquent d’importantes composantes 
pluriannuelles dans leur dynamique. Explication appuyée par des indicateurs 
de temps de demi-décroissance (de vidange de l’aquifère) longs ainsi que par 
des temps d'arrivée des précipitations importants aussi. 

CB_2 
(PA_B5) 
n = 117 

Points localisés majoritairement (~2/3 des points) au Sud d’une ligne Ouest-
Est entre Sélestat et Lahr/Schwarzwald. Dont environ la moitié des points 
concentrés dans une zone relativement étroite de la rive droite du Rhin entre 
Vieux-Brisach (Breisach am Rhein) et Bad Krozingen. L'inertie (relativement 
importante mais sans délai notable par rapport aux pluies) semble jouer un 
rôle important dans l'établissement de ce cluster. ZNS là aussi souvent >5 
mètres. 

CB_3 
(PA_B6) 
n = 91 

Points situés dans le Haut-Rhin, concentrés au Sud d’une ligne Ouest-Est 
entre Colmar et Fribourg-en-Brisgau. Groupe caractérisé par une ZNS encore 
plus épaisse en général (épaisseur médiane de la ZNS >10 mètres) avec un 
comportement plus inertiel que CB_2, mais de même ordre que CB_1. 
Alimentation de l’aquifère par Sundgau. Très bonne cohérence avec les longs 
délais estimés d'arrivée des précipitations. 

CB_4 
(PA_Bbis2) 

n = 193 

Points situés dans la plaine du Rhin franco-allemande, hors influence 
significative du Rhin, très majoritairement en contexte agricole ou proche-
urbain ; cohérent avec une dynamique qui apparaît souvent impactée par 
des prélèvements estivaux (anthropiques ou naturels). Faibles épaisseurs de 
ZNS <5 mètres pour >95 % des points du groupe. Concentration principale 
des points du groupe (>50 %) à l'est de Strasbourg, en Allemagne entre Bühl et 
OƯenburg. Concentration secondaire (~15 %) autour de Fribourg-en-Brisgau 
jusqu’à Riegel am Kaiserstuhl. Pas de concentration notable des points du 
côté français (~25 %), dispersés sur toute la longueur nord-sud de la plaine 
d’Alsace, majoritairement éloigné du Rhin. 

CB_5 
(PA_Bothers) 

n = 325 
 

 

Groupe rassemblant les autres points de la plaine du Rhin les deux côtés 
de la frontière, également hors influence significative du Rhin ; sans 
explication forte pour le distinguer du groupe CB_4 (corrélation entre 
médoïdes CB_5 et CB_4 : r = +0.88) si ce n'est une inertie légèrement plus 
importante en moyenne et une dynamique plus rarement impactée par des 
prélèvements estivaux conséquents. Faibles épaisseurs de ZNS <5 mètres 
pour ~85 % des points du groupe. Presqu’aucun point ne se trouve à proximité 
du Rhin (en général >1–2 km de part et d’autre du Rhin). 

CB_6 
(RR_A6) 
n = 46 

Points fortement influencés par le Rhin, plus précisément impactés par le 
barrage agricole de Kehl-Strasbourg au sud-est de la ville. Points concentrés 
à l’amont du barrage, sur la rive droite du Rhin seulement (imperméabilisation 
anthropique de la rive gauche coté Strasbourg). Evolution temporelle 
(signature) très particulière de la piézométrie caractérisée par des niveaux 
nettement plus bas avant le milieu des années 1980 (hausse soudaine des 
niveaux vers 1985).  
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CB_7 
(RR_Aothers) 

n = 656 

Groupe rassemblant les autres points sous forte influence du Rhin ; sans 
explication forte pour en distinguer des sous-groupes autres que CB_6. 
Comportements (évolutions) piézométriques homogènes dans l’ensemble. 
DiƯérences subtiles entre les sous-groupes qui l’ont composé (clusters de la 
famille ‘A’ sauf ‘A6’ devenu CB_6) mais leur répartition spatiale dispersée est 
apparue diƯicilement explicable. 
Remarque : Il serait possible, techniquement, d’aƯiner le découpage de ce 
groupe, mais il n’apparaît pas particulièrement utile de le faire d’un point de 
vue utilitaire pratique. 

CB_X0 
(MISC_in_ 
betweens) 

n = 74 

Points retirés des groupes principaux à cause d’une incohérence spatiale 
entre leur localisation et leur cluster initialement attribué (lors de la première 
itération de clustering par corrélation établissant les deux grands groupes Rhin 
versus Non-Rhin) : soit le point était placé dans un des clusters Rhin alors qu’il 
était éloigné du Rhin ; soit il était placé dans un des clusters Non-Rhin tout en 
étant très proche du Rhin. 
Ces points ne sont pas définitivement écartés, mais plutôt mis de côté, pour 
une éventuelle réintégration dans les groupes principaux lors de la phase à 
suivre de « Synthèse des résultats ». 

CB_XX 
(MISC_ 

outliers) 
n = 25 

Points dont la chronique montre une évolution piézométrique très singulière 
voire anormale. Ce groupe permet d’écarter des séries trop peu corrélées aux 
médoïdes des groupes principaux CB_1 à CB_7, avec une évolution trop rare 
dans le jeu de données pour qu’elle ait mené à la formation d’un cluster dédié ; 
et des séries cassées par une rupture (changement important et soudain) 
dans l’évolution de leurs niveaux (probablement dû à des erreurs lors du calcul 
des cotes piézométriques à partir des données de profondeur d’eau). 
Remarque : Cette liste de points jugés « aberrants » à ce stade est révisée plus 
tard, lors de la « Synthèse des résultats ». 
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4.2 Regroupement par caractéristiques dynamiques des chroniques  
 

Au moyen des indices de validation décrits, six clusters ont été identifiés comme regroupement 
optimal. Ces six clusters peuvent être classés en deux catégories principales en fonction de leurs 
propriétés dynamiques et de leur localisation spatiale : les clusters à influence dominante du 
Rhin et les clusters à influence dominée par les précipitations. 

 

Figure 8 Carte des groupes obtenues par la méthode de regroupement basée sur l'utilisation de caractéristiques 
dynamique des chroniques 

Clusters influencés par le Rhin 

Les clusters 1 à 3 présentent un comportement dynamique des eaux souterraines clairement 
influencé par le Rhin. Leurs piézomètres réagissent fortement aux niveaux d'eau du fleuve, à 
l'infiltration, au couplage hydraulique et aux interventions anthropiques telles que la gestion des 
crues. Ils se caractérisent par des réponses rapides aux variations du niveau d'eau du Rhin, des 
amplitudes prononcées lors des hautes eaux, des cycles saisonniers bien définis et, dans 
certains cas, des influences techniques liées à des opérations de régulation (inondations 
contrôlées, eƯets de retenue, etc). 

Les trois clusters présentent une périodicité annuelle élevée (P52) et une bonne concordance 
avec le cycle hydrologique annuel (SB) – caractéristiques typiques des systèmes nappe-rivière à 
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dynamique saisonnière. Les courtes phases de vidange de la nappe (LRec) témoignent d'un 
drainage rapide vers le Rhin, tandis que les phases de hautes eaux souterraines relativement 
courtes (HPD) indiquent un couplage direct et perméable avec le système fluvial. Ces propriétés 
hydrologiques distinguent clairement les clusters 1 à 3 des clusters 4 à 6. 

Malgré leur influence commune du Rhin, les clusters 1 et 3 se distinguent particulièrement par 
leur dynamique :  

- le cluster 1 représente un système fortement saisonnier, caractérisé par une amplitude 
relative élevée (RR), des valeurs marquées de P52 et SB, et des phases de vidange 
courtes. Les réactions rapides et liées aux crues, la courte durée des phases de hautes 
eaux (HPD) et une valeur médiane intermédiaire indiquent un système actif et 
perméable, principalement contrôlé par le régime du Rhin.  

- Le cluster 3, en revanche, présente un système diƯéré et accumulatif avec une 
amplitude relative plus faible, des valeurs P52 plus faibles et une longue durée de 
vidange de la nappe. Les phases de hautes eaux prolongées, la médiane élevée et les 
fluctuations à court terme (SDdiƯ) moins importantes indiquent une dynamique des 
eaux souterraines lente et régulée, typique des zones de rétention, eƯets de contre-
pression ou des zones d'inondations contrôlées. 

- Le cluster 2 constitue un type de transition entre la régulation saisonnière du cluster 1 et 
le comportement caractérisé par une forte capacité de stockage du cluster 3, sans 
présenter les extrêmes. 

-  
Figure 9 :  Violon plots des neuf caractéristiques dynamiques sélectionnées pour les clusters 1 à 3. Les 
paramètres centraux représentés décrivent : la saisonnalité (P52, SB), la variabilité à court terme (SDdiƯ), le 
comportement en période de hautes eaux (HPD) ainsi que la position et la distribution des niveaux 
piézométriques (médiane, RR, LRec, skew, jumps) 

 

Clusters dominés par les précipitations 

 Les clusters 4 à 6 représentent des dynamiques des eaux souterraines principalement 
influencées par les conditions climatiques, les caractéristiques locales de stockage et les 
contraintes topographiques, à la diƯérence des clusters proches du Rhin qui sont directement 
connectés au réseau fluvial : 

- Le cluster 4 présente le comportement saisonnier le plus marqué, avec une forte 
périodicité annuelle et une forte concordance avec le cycle hydrologique annuel typique. 
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La faible variabilité à court terme et les faibles valeurs de sauts indiquent un système 
stable, à influence climatique ; et non aƯecté par des perturbations externes majeures. 

- Le cluster 6, en revanche, se caractérise par une faible saisonnalité, de longues phases 
de vidange de la nappe et des niveaux d'eau élevés persistants. Ces caractéristiques 
traduisent un système à inertie (réponse lente), avec une recharge souterraine retardée, 
ce qui est typique des zones présentant une forte épaisseur de la zone non saturée ou une 
faible perméabilité verticale. 

- Le cluster 5 occupe une position intermédiaire entre ces deux extrêmes. Avec des 
caractéristiques modérées, il présente à la fois une régulation saisonnière et des signes 
inertiels. Il représente donc un régime mixte et équilibré, soumis à des influences mixtes, 
qui n'est ni très réactif ni totalement inertiel. 

 

Figure 10 : Graphiques en violon des neuf caractéristiques dynamiques sélectionnées des niveaux des eaux 
souterraines pour les clusters 4 à 6. Sont représentées les valeurs caractéristiques centrales décrivant la saisonnalité 
(P52, SB), la variabilité à court terme (SDdiƯ), le comportement en hautes eaux (HPD), ainsi que la position et la 
répartition du niveau des eaux souterraines (médiane, RR, LRec, skew, jumps). 

 

4.3 Regroupement par indicateurs hydrodynamiques 
 

Les trois meilleurs tests de regroupement obtenus par cette méthode présentent les valeurs de 
coeƯicient de silhouette et d’index de validité suivantes ainsi que le nombre de points atypiques 
suivants :  

N° test CoeƯicient de 
silhouette 

Index de validité Nombre de points 
atypiques 

1 74 77 0 
2 67 76 3 
3 67 76 7 

 

Le test n°1 est donc retenu. Ce test a permis le regroupement des piézomètres utilisés en 5 
groupes (Figure 11). Les 6 variables retenues par la chaîne de traitement sont :  

- l’indicateur de précocité des étiages (lié aux prélèvements anthropiques et naturels) 
(Susp_Prel_Etiage),  



 
 

28 
 

- l’indicateur de décalage entre les pluies et la réponse piézométrique (Décalage_mois-
ISP),  

- la corrélation aux pluies (Corr_ISP),  
- la corrélation au débit du Rhin à Maxau (Corr_débit_total),  
- l’indicateur de la contribution de la fréquence 5-12 ans au signal piézométrique 

(MensFq5-12ans),  
- l’indicateur de la contribution de la fréquence annuelle au signal piézométrique 

(MensFq1an).  

 

Parmi les 5 groupes construits à partir des indicateurs hydrodynamiques (HI) identifiés (cf. carte 
Figure 11), HI_2 et HI_5 se distinguent par leur concentration autour du Rhin, tandis que HI_1, 
HI_3 et HI_4 couvrent les zones de plaine et de piémont. HI_3 semble également, entre autres, 
couvrir les zones connues pour leur inertie plus importante (secteur de la Hardt en Alsace et de 
Rastatt dans le Bade-Wurtemberg). 
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Figure 11 Carte des groupes obtenus par la méthode de regroupement basée sur l'utilisation d'indicateurs 
hydrodynamiques 

Les 5 groupes constitués sont caractérisés par la répartition des valeurs des variables telle que 
présentée à la Figure 12, avec sa matrice de caractérisation selon 5 classes de quantiles 
(valeurs sériées (de la plus faible (couleur bleu) à la plus élevée (couleur rouge)). La Figure 13 
présente la distribution des variables quantitatives des groupes avec les boites à moustaches.  
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Figure 12 Matrice de caractérisation des groupes obtenus par la méthode de regroupement basée sur les indicateurs 
hydrodynamiques - Médiane (CVR %). Couleurs des classes : valeur sériée de la plus faible (couleur bleu) à la plus 
élevée (couleur rouge)

 

Figure 13 Distribution des variables quantitatives des groupes obtenus par la méthode basée sur les indicateurs 
hydrodynamiques 
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La visualisation Radviz des groupes constitués (Figure 14) permet de vérifier la cohérence 
géométrique des groupes et de constater que ces derniers sont bien distincts et présentent peu 
de mélange. 

 

 

Figure 14 Visualisation Radviz des variables standardisées pour les groupes obtenus par méthode basée sur les 
indicateurs hydrodynamiques 

Les tendances, et notamment les tendances linéaires multisegments calculées par l’outil 
CensoredStats intégré à Qualistat [11] n’ont pas été intégrées en tant que variables explicatives 
au regroupement car elles sont une résultante du comportement hydrodynamique de la nappe et 
de sa réaction aux conditions de recharge et aux prélèvements. Toutefois, les tendances 
significatives ont été analysées dans le cadre du post-traitement du regroupement, lors de la 
phase de caractérisation des groupes. Ainsi, l’analyse conjointe des tendances (en italique) avec 
les caractéristiques des groupes formés permet la caractérisation suivante de chacun des 
groupes (Tableau 4) : 

Tableau 4 Caractérisation et description des 5 groupes obtenus par la méthode de regroupement basée sur les 
indicateurs hydrodynamiques 

N° groupe Caractérisation 
1 Le groupe n°1 présente une forte corrélation à la pluie, sans décalage 

significatif, avec un cycle annuel dominant. Ce groupe est modérément 
corrélé aux débits du Rhin et montre une précocité des étiages importante 
(lié aux prélèvements, anthropiques ou non). Les tendances observées dans 
ce groupe montrent une baisse modérément claire.  
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2 Le groupe n°2 présente une faible corrélation à la pluie, avec un important 
décalage d’environ 5 à 6 mois en moyenne. Le cycle annuel est dominant. Le 
groupe est modérément corrélé aux débits du Rhin.   

3 Le groupe n°3 est fortement corrélé à la pluie, avec un décalage d’environ 0.5 
à 1.5 mois. La contribution de la fréquence pluriannuelle de 5 à12 ans dans le 
signal piézométrique de ces points est importante. Les piézomètres du groupe 
sont peu corrélés aux débits du Rhin.  Une tendance à la baisse est 
clairement identifiée.  

4 Le groupe n°4 montre une forte corrélation à la pluie, sans décalage 
significatif. Le cycle annuel est dominant dans les signaux piézométriques de 
ce groupe.  Ces piézomètres montrent une corrélation modérée avec les 
débits du Rhin. Une tendance à la baisse est modérément claire sur ces 
points. 

5 Le groupe n°5 montre une faible corrélation à la pluie, sans décalage 
significatif. Le cycle annuel est peu dominant. Les chroniques piézométriques 
de ce groupe sont toutefois fortement corrélées aux débits du Rhin.  
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5 SYNTHESE DES RESULTATS : Sectorisation de 
l’aquifère rhénan en grands ensembles 

 

5.1 Préparation 
Les points (piézomètres) de la zone d’étude ont été regroupés indépendamment selon 3 
méthodes diƯérentes, avec : 

- un nombre de chroniques piézométriques considérées diƯérent selon les contraintes 
respectives (certaines séries étant trop courtes ou lacunaires pour permettre le calcul 
d’indicateurs requis par une méthode de regroupement, par exemple) 

- un nombre de regroupements proposés diƯérent : 

Regroupement basé sur… Nb de 
points 

Nb de 
groupes 

  corrélation entre chroniques 1608 / 1608 9 (7 + 2) 
  caractéristiques dynamiques 1554 / 1559 6 
  indicateurs hydrodynamiques 965 / 971 5 

Remarque : Dans la suite des analyses pour la synthèse des résultats, seuls les points présents dans le 
regroupement par corrélation entre chroniques seront considérés, d’où les nombres de points indiqués 
dans ce tableau légèrement inférieurs pour les deux autres méthodes par rapport au nombre de points 
réellement traités (cf. « Nb points » = [points traités par la méthode et aussi par corrélation…] / [points 
traités par la méthode]). 

L’objectif de ce travail de synthèse a été de construire un regroupement qui résume autant que 
possible l’ensemble de ces résultats, par la comparaison et la combinaison de ces derniers. 

Pour ce faire, il a été d’abord vérifié si les groupes formés étaient en partie cohérents entre les 3 
méthodes, c’est-à-dire si un groupe d’une méthode donnée partageait une grande majorité de ses 
points dans seulement 1 groupe de chaque autre méthode avec une faible dispersion dans 
d’autres groupes. Cependant, cela est rarement le cas : la plupart des groupes d’une méthode 
ont leurs points dispersés dans plusieurs groupes d’une autre méthode. Autrement dit, une 
grande diversité de combinaisons de groupes a été observée. 

En eƯet, en listant toutes les combinaisons possibles des identifiants de groupe entre les 3 
méthodes — en considérant les 907 points inclus dans les trois regroupements mais en ignorant 
les points associés aux groupes de rebuts provisoires (CB_XX et CB_X0) — 81 combinaisons sont 
obtenues, dont seulement 21 concernent au moins 10 points tandis que 26 sous-groupes ne 
concernent que 1 point. Un extrait de cette longue liste de combinaisons est exposé dans le 
tableau ci-dessous, limité pour l’exemple aux deux groupes sous influence proximale du Rhin 
(CB_6 et CB_7) d’après l’approche par corrélation entre chroniques (cf. Tableau 5). Un diagramme 
de Sankey a également été généré afin de visualiser plus eƯicacement la multiplicité et 
l’importance relative (fréquence) de ces combinaisons (Figure 15). 

Ce premier exercice de comparaison globale des regroupements a permis de discerner une 
cohérence non pas dans le détail dans des groupes mais dans leur relation au Rhin. En eƯet, en 
examinant la liste de combinaisons (Tableau 5) ou le diagramme de Sankey (Figure 15) ci-
dessous, une bonne cohérence d’ensemble entre le grand groupe CB_7 (‘RR_Aothers’) établi par 
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corrélation, et les groupes DF_1 à DF_3 d’une part, et les groupes HI_2 et HI_5 d’autre part peut 
être constatée ; tous des groupes de points interprétés comme influencés par le Rhin. 

C’est sur la base de ces premiers constats qu’il a été décidé de commencer par regrouper les 
résultats des 3 méthodes selon une classification binaire : soit « Rhin », soit « Non Rhin ». Une 
règle de majorité hybride a été appliquée pour déterminer la classe binaire à attribuer à chaque 
combinaison. A titre de rappel (depuis les résultats des diƯérentes méthodes) : 

 Les groupes liés au Rhin sont : CB_6 et CB_7 ; DF_1 à DF_3 ; HI_2 et HI_5. 
 Les groupes non liés au Rhin sont : CB_1 à CB_5 ; DF_4 à DF_6 ; HI_1, HI_3 et HI_4. 
 Les groupes sans lien établi à ce stade : CB_X0 et CB_XX. 

Si une combinaison est composée d’une majorité de groupes interprétés comme ayant des 
dynamiques influencées par le Rhin, alors la classe « Rhin » lui est attribuée. De même, si une 
majorité des groupes composant la combinaison sont considérés non influencés par le Rhin, 
alors la combinaison est classée en « Non Rhin ». DiƯéremment, si la combinaison est composée 
de groupes n’oƯrant pas de cohérence (en termes d’influence ou non-influence par le Rhin), une 
classe « indéterminée » (« ? ») (nommée ‘UNSURE-DISCARD-CHECK’ dans les traitements) lui 
est attribuée à ce stade. 

 Le bilan de cette étape de classification binaire des résultats combinés est de :  

- 749 points (chroniques piézométriques) classés  « Rhin » ; 
- 804 points classés  « Non Rhin » ;  
- et 69 points indéterminés  « ? ». Remarques : i) Les chroniques de cette classe « ? » sont 

examinées plus tard, une à la fois à dire d’expert, pour tenter de les réintégrer dans un des 
groupes de la synthèse. ii) Les combinaisons pour lesquelles le point n’a pas été retenu 
par toutes les méthodes de regroupement sont quand même classées selon la règle de 
majorité (ex. 2/2 ou 1/1 méthode(s) ayant attribué à ce point un groupe influencé par le 
Rhin  classe binaire « influence significative Rhin ; mais 1/2 groupes…  classe 
indéterminée « ? »). 

Tableau 5 : Extrait de la liste des combinaisons de groupes des 3 méthodes pour les groupes CB_6 et CB_7 sous 
influence du Rhin d’après les résultats du regroupement par corrélation 

Identifiant de la 
combinaison 
(pseudo-groupe) 

Nb points 
total pour la 

combinaison 

Nb méthodes 
suggérant une 

influence du Rhin 
CB_6.DF_2.HI_1 1 2/3 
CB_6.DF_2.HI_2 1 3/3 
CB_6.DF_2.HI_5 7 3/3 
CB_6.DF_3.HI_1 1 2/3 
CB_6.DF_3.HI_2 5 3/3 
CB_6.DF_3.HI_5 4 3/3 
CB_6.DF_4.HI_1 2 1/3 
CB_6.DF_4.HI_5 5 2/3 
CB_6.DF_5.HI_1 3 1/3 
CB_6.DF_5.HI_2 1 2/3 
CB_6.DF_5.HI_5 2 2/3 
CB_7.DF_1.HI_1 4 2/3 
CB_7.DF_1.HI_2 19 3/3 
CB_7.DF_1.HI_5 80 3/3 
CB_7.DF_2.HI_1 1 1/3 
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CB_7.DF_2.HI_2 107 3/3 
CB_7.DF_2.HI_5 63 3/3 
CB_7.DF_3.HI_1 1 1/3 
CB_7.DF_3.HI_2 32 3/3 
CB_7.DF_3.HI_5 26 3/3 
CB_7.DF_4.HI_1 1 1/3 
CB_7.DF_4.HI_2 3 2/3 
CB_7.DF_4.HI_5 19 2/3 
CB_7.DF_5.HI_1 6 1/3 
CB_7.DF_5.HI_2 1 2/3 
CB_7.DF_5.HI_4 3 1/3 
CB_7.DF_5.HI_5 19 2/3 
CB_7.DF_6.HI_5 5 2/3 

 

 

Figure 15 Diagramme de Sankey : croisement entre les trois clusterings et leurs groupes distincts 

 

Une fois cette classification binaire très générale en 2 grandes familles « Rhin » vs « Non-Rhin » 
eƯectuée, une suite de modifications a été définie et programmée progressivement, à dire 
d’expert : tantôt en formulant une règle pour traduire certaines combinaisons ciblées en un 
groupe plus précis dans l’une des 2 grandes familles ; tantôt en définissant des cas particuliers 
(liste de points auxquels attribuer tel groupe destination). Seules quelques-unes de ces 
modifications ont pu être conçues en se basant sur le bilan des combinaisons de groupes fourni 
par un tableau de fréquence (cf. « Nb points total pour la combinaison »,Tableau 5) ou par le 
diagramme de Sankey (Figure 15Figure 15). La plupart des modifications ont été définies « à dire 
d’experts », en explorant le regroupement de cette synthèse au fil de sa construction, dans un 
logiciel de SIG permettant à la fois de localiser les points, de voir le groupe attribué à chacun d’eux 
et de consulter une vue graphique montrant en premier plan la série piézométrique du point avec 
en arrière-plan toutes les autres séries du groupe, dont la série médoïde. 

A titre d’exemple, voici deux séries piézométriques allemandes dont le groupe attribué a été 
modifié, précisé, lors de ce travail itératif (Figure 16). Le groupe initialement attribué était ‘RHINE’ 
pour ces deux points, indiquant leur appartenance présumée à la grande famille « Rhin ». Comme 
la chronique du piézomètre 108/064-3 se révèle très similaire au médoïde du cluster CB_6 
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(‘RR_A6’) établi précédemment avec l’approche par corrélation, elle a donc été intégrée à un 
groupe nommé « RHINE-A6-NEAR-KEHL » dans cette synthèse. La chronique du piézomètre 
810/066-0, montre en revanche une évolution singulière de ses niveaux piézométriques, en 
particulier depuis la fin des années 2010 (on ne retrouve pas de signal similaire dans les points 
situés à proximité). Ce piézomètre s’avère finalement non corrélé à l’ensemble des médoïdes des 
groupes progressivement définis dans cette synthèse. D’où son intégration dans un groupe 
« SINGULAR ». 

 

Figure 16 Exemples de deux chroniques piézométriques (normalisées) dont le groupe attribué a été modifié, précisé, 
au fil de l’exploration SIG et pendant la construction de la synthèse des résultats, (La courbe noire en avant-plan = le 
médoïde du groupe. Les autres courbes, en arrière-plan, ont des couleurs aléatoires ; abréviations : cf. Annexe 150) 

Les conditions définies pour modifier les « groupes de synthèse » attribués des séries jusqu’à 
aboutir au regroupement final sont détaillées dans le Erreur ! Source du renvoi introuvable. ci-
dessous. Ce tableau relie le Groupe initialement attribué à chaque série selon la classification 
binaire « Rhin » (‘RHINE’) / « Non-Rhin » (‘NOT-RHINE’) / « ? » (‘UNSURE…’) ; au Groupe finalement 
attribué dans cette synthèse (C1 à C9) ; en détaillant les diƯérents Groupes par corrélation 
(CB_...) obtenus plus tôt. La fréquence de chaque combinaison (colonne « N ») ainsi qu’un 
indicateur de conservation de la correspondance entre le groupe par corrélation et le groupe final 
(colonne « Final = CB ? ») y figurent aussi. Ce tableau permet de constater que : 

 738 (soit 95 %) des 777 points initialement classés ‘NOT-RHINE’ ont un groupe final qui 
conserve l’explication attribuée précédemment à ces points par corrélation. Ces points 
« Non-Rhin » cohérents avec les corrélations, aboutissent dans 5 groupes finaux distincts. 

 639 (soit 90 %) des 711 points initialement classés ‘RHINE’ ont un groupe final qui 
conserve l’explication attribuée précédemment à ces points par corrélation. Ces points 
« Rhin » cohérents avec les corrélations, aboutissent dans 3 groupes finaux distincts. 

 Sur les 40 points initialement classés ‘UNSURE…’ en raison d’un flou ou d’incohérences 
constatées dans les résultats des trois méthodes de regroupement : 18 aboutissent dans 
des groupes sous influence proximale du Rhin (‘RHINE-…’) ; 15 intègrent des groupes hors 
influence notable du Rhin (‘NOT-RHINE-…’) ; et 7 sont considérés évoquer une dynamique 
de ‘TRANSITION’ entre « Rhin » et « Non-Rhin ». 

 On note seulement une petite minorité de cas où le point est passé d’une grande famille 
à l’autre entre la classification binaire initiale et le regroupement final : 26 (soit 3 %) des 
points d’abord classés ‘NOT-RHINE’ sont finalement placés dans des groupes ‘RHINE-…’ 
et 18 points initialement classés ‘RHINE’ (soit <1 %) sont finalement placés soit dans des 
groupes ‘NOT-RHINE-…’ (4) ou dans le groupe de ‘TRANSITION’ (14).  
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 Le groupe final ‘RHINE-NEAR-BREISACH’, constitué pendant ce travail de synthèse suite 
au constat d’un signal spécifique discernable concentré dans une zone proche du Rhin, a 
été créé à partir de points issus majoritairement des groupes CB_2 (‘PA_B5’) et CB_7 
(‘RR_Aothers’). Cela rappelle qu’il peut y avoir des similitudes entre séries de diƯérents 
groupes, surtout parmi un sous-ensemble de points voisins. 

 La cohérence globale (équivalence) entre les groupes finaux principaux et ceux proposés 
plus tôt par corrélation est très élevée : 88 % (1337 / 1528). Un constat prévisible puisque 
le regroupement construit lors de cette synthèse a été largement basé sur les résultats de 
l’approche de regroupement par corrélation. 

Quelques remarques liées à ce tableau : 

 Pour limiter la longueur de ce tableau, les 94 points finalement classés dans les groupes 
‘ANOMALOUS’, ‘SINGULAR’, ‘TOO-SHORT-or-MISSING’ ou ‘DISCARD’, y ont été ignorés.  

 De même, les groupes obtenus plus tôt par caractéristiques dynamiques (DF_...) ou par 
indicateurs hydrodynamiques (HI_...) n’ont pas été considérés dans la préparation de ce 
tableau, car autrement il aurait atteint >200 lignes, le rendant diƯicilement lisible. 

 A titre informatif, les libellés de groupes écrits en rouge mettent en évidence les cas 
incohérents par rapport au groupe finalement attribué dans la synthèse. 

Tableau 6 : Tableau de liaison entre le Groupe initial de chaque série et le Groupe finalement attribué dans cette 
synthèse (C1 à C9), en détaillant si oui ou non, les binômes de groupes sont corrélés (9 binômes= « TRUE ») 

Groupe initial Groupe final # G. par corrélation # N Final = CB ? 
NOT-RHINE NOT-RHINE-ALL-OTHERS C1 PA_Bothers CB_5 303 TRUE 

NOT-RHINE NOT-RHINE-ALL-OTHERS C1 PA_Bbis2 CB_4 184 TRUE 

NOT-RHINE NOT-RHINE-ALL-OTHERS C1 MISC_in_betweens CB_X0 1 FALSE 

NOT-RHINE NOT-RHINE-ALL-OTHERS C1 RR_Aothers CB_7 1 FALSE 

NOT-RHINE NOT-RHINE-PA_B2 C2 PA_B2 CB_1 77 TRUE 

NOT-RHINE NOT-RHINE-PA_B2 C2 PA_Bothers CB_5 2 FALSE 

NOT-RHINE NOT-RHINE-PA_B2 C2 RR_Aothers CB_7 1 FALSE 

NOT-RHINE NOT-RHINE-PA_B5-full C3 PA_B5 CB_2 76 TRUE 

NOT-RHINE NOT-RHINE-PA_B5-full C3 PA_Bothers CB_5 3 FALSE 

NOT-RHINE NOT-RHINE-PA_B5-full C3 MISC_in_betweens CB_X0 1 FALSE 

NOT-RHINE NOT-RHINE-PA_B6 C4 PA_B6 CB_3 84 TRUE 

NOT-RHINE NOT-RHINE-PA_B6 C4 PA_B5 CB_2 4 FALSE 

NOT-RHINE RHINE-A6-NEAR-KEHL C5 RR_A6 CB_6 5 FALSE 

NOT-RHINE RHINE-A6-NEAR-KEHL C5 PA_Bbis2 CB_4 1 FALSE 

NOT-RHINE RHINE-A6-NEAR-KEHL C5 PA_Bothers CB_5 1 FALSE 

NOT-RHINE RHINE-ALL-OTHERS C6 MISC_in_betweens CB_X0 2 FALSE 

NOT-RHINE RHINE-ALL-OTHERS C6 MISC_outliers CB_XX 1 FALSE 

NOT-RHINE RHINE-ALL-OTHERS C6 RR_Aothers CB_7 1 FALSE 

NOT-RHINE RHINE-NEAR-BREISACH C7 PA_B5 CB_2 14 FALSE 

NOT-RHINE RHINE-NEAR-BREISACH C7 RR_Aothers CB_7 1 FALSE 

NOT-RHINE TRANSITION C9 RR_Aothers CB_7 5 FALSE 

NOT-RHINE TRANSITION C9 MISC_in_betweens CB_X0 4 TRUE 

NOT-RHINE TRANSITION C9 PA_Bothers CB_5 4 FALSE 
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Groupe initial Groupe final # G. par corrélation # N Final = CB ? 
NOT-RHINE TRANSITION C9 PA_Bbis2 CB_4 1 FALSE 

RHINE NOT-RHINE-ALL-OTHERS C1 RR_Aothers CB_7 2 FALSE 

RHINE NOT-RHINE-PA_B5-full C3 RR_Aothers CB_7 1 FALSE 

RHINE NOT-RHINE-PA_B6 C4 PA_B6 CB_3 1 FALSE 

RHINE RHINE-A6-NEAR-KEHL C5 RR_A6 CB_6 29 TRUE 

RHINE RHINE-A6-NEAR-KEHL C5 RR_Aothers CB_7 7 FALSE 

RHINE RHINE-A6-NEAR-KEHL C5 MISC_outliers CB_XX 1 FALSE 

RHINE RHINE-ALL-OTHERS C6 RR_Aothers CB_7 579 TRUE 

RHINE RHINE-ALL-OTHERS C6 MISC_in_betweens CB_X0 44 FALSE 

RHINE RHINE-ALL-OTHERS C6 RR_A6 CB_6 5 FALSE 

RHINE RHINE-ALL-OTHERS C6 PA_Bothers CB_5 4 FALSE 

RHINE RHINE-ALL-OTHERS C6 PA_B5 CB_2 2 FALSE 

RHINE RHINE-NEAR-BREISACH C7 RR_Aothers CB_7 19 FALSE 

RHINE RHINE-NEAR-BREISACH C7 PA_B5 CB_2 1 FALSE 

RHINE RHINE-NEAR-BREISACH C7 PA_Bothers CB_5 1 FALSE 

RHINE RHINE-NEAR-BREISACH C7 MISC_in_betweens CB_X0 1 FALSE 

RHINE TRANSITION C9 RR_Aothers CB_7 14 FALSE 

UNSURE… NOT-RHINE-ALL-OTHERS C1 RR_Aothers CB_7 1 FALSE 

UNSURE… NOT-RHINE-ALL-OTHERS C1 PA_Bothers CB_5 1 FALSE 

UNSURE… NOT-RHINE-PA_B2 C2 PA_B2 CB_1 1 FALSE 

UNSURE… NOT-RHINE-PA_B5-full C3 PA_B5 CB_2 6 FALSE 

UNSURE… NOT-RHINE-PA_B6 C4 PA_B6 CB_3 6 FALSE 

UNSURE… RHINE-A6-NEAR-KEHL C5 RR_Aothers CB_7 1 FALSE 

UNSURE… RHINE-A6-NEAR-KEHL C5 RR_A6 CB_6 1 FALSE 

UNSURE… RHINE-ALL-OTHERS C6 SKIPPED   10 FALSE 

UNSURE… RHINE-ALL-OTHERS C6 RR_Aothers CB_7 3 FALSE 

UNSURE… RHINE-ALL-OTHERS C6 MISC_in_betweens CB_X0 1 FALSE 

UNSURE… RHINE-NEAR-BREISACH C7 PA_B5 CB_2 2 FALSE 

UNSURE… TRANSITION C9 RR_Aothers CB_7 3 FALSE 

UNSURE… TRANSITION C9 PA_Bbis2 CB_4 2 FALSE 

UNSURE… TRANSITION C9 MISC_in_betweens CB_X0 1 TRUE 

UNSURE… TRANSITION C9 RR_A6 CB_6 1 FALSE 
 

5.2 Résultats détaillés 
Le regroupement final construit par cette synthèse est ainsi constitué de : 

 9 groupes principaux (C1 à C9) dont 4 groupes « Non-Rhin » (C1 à C4), 3 groupes « Rhin » 
(C5 à C7), un groupe de transition (C9) et un groupe de dynamiques singulières (C8) ; 

 3 groupes secondaires (CX…) que l’on peut généralement ignorer dans la plupart des cas 
d’utilisation : des séries anormales (CXa), trop courtes (CXs) ou toujours à exclure (CXd) ; 

Ainsi, parmi les 1622 séries piézométriques initialement retenus pour la méthode corrélation 
entre chroniques, 1574 (97 %) peuvent être classées dans les 9 groupes principaux. 



 
 

39 
 

 

Les graphiques illustrant la composition de chacun des groupes de ce regroupement final sont 
présentés à l’ANNEXE 1 : Composition des groupes finaux. 

Le Tableau 7 ci-dessous décrit la cohérence et l’homogénéité du contenu de chaque groupe final 
par des statistiques calculées à partir des coeƯicients de corrélation (r) entre les N séries du 
groupe et la série médoïde (de référence) du groupe. En complément des constats faits plus tôt 
avec le regroupement par corrélation, on note ici que : 

 La plupart des groupes principaux (C1 à C5, C7 et C9) sont composés de séries qui sont 
très majoritairement dans leur « meilleur » groupe d’après les corrélations aux médoïdes. 
Ces groupes principaux montrent toutefois une part importante (40-50 %) de séries dont 
la corrélation au médoïde n’est pas élevée, ce qui souligne une variabilité interne. 

 Le groupe C6 (‘RHINE-ALL-OTHERS’) montre un moins bon indice de cohérence mais cela 
est attendu d’un groupe aussi gros et hétérogène puisqu’il rassemble toutes les « autres » 
dynamiques estimées influencés par le Rhin. Les raisons pour lesquelles ce groupe n’a 
pas été subdivisé en petits groupes plus homogènes ont été abordés plus tôt (souhait de 
pouvoir expliquer chaque groupe). On peut aussi ajouter ici que plus un groupe est gros et 
diversifié, moins la série retenue comme médoïde pour le groupe est susceptible de très 
bien corréler avec une majorité des séries membres dudit groupe. D’où le peu de séries 
(12.6 %) fortement corrélées au médoïde du groupe (C6). 

 De même, dans le cas du groupe C8 (‘SINGULAR’), l’hétérogénéité du groupe et le peu de 
corrélations élevées au médoïde sont des résultats attendus. 

 Sans surprise, les 3 groupes secondaires de séries devant généralement être ignorées 
(CXa, CXd et CXs) sont très hétérogènes. Les très mauvaises corrélations au médoïde 
choisi pour chacun de ces groupes, mettent en évidence leur nature disparate. 
Une majorité des séries placées dans ces groupes secondaires auraient « préféré » aller 
dans d’autres groupes (% r best ~ 10-15 % dans CXa et CXs). Cela rappelle que la mise à 
l’écart de ces séries a été faite manuellement (lors d’itérations d’expertise des résultats) 
et que sans ces interventions manuelles, les groupes finaux principaux auraient été 
dégradés par ces séries anormales ou trop courtes (qui auraient certes été « mieux » 
corrélées à ces groupes, mais sans que le choix du groupe soit suƯisamment robuste 
autant en termes de corrélation (r) que de contexte hydrogéologique). 

 

Tableau 7 : Tableau indiquant pour chaque groupe la cohérence et l’homogénéité de son contenu par des statistiques 
calculées à partir des coeƯicients de corrélation (r) entre les N séries du groupe et la série médoïde (de référence) du 
groupe 

Group 
% r best 
(= max r) 

% r high 
(r>0.8) 

% r high 
& best 

% r low 
(r<0.8) 

% r very 
low (r<0.5) 

% r too bad 
(r<0.25) 

N points 
TOTAL 

N points r 
very low 

C1 84.4 51.1 48.3 48.9 3.0 0.0 493 15 
C2 91.4 60.5 59.3 39.5 4.9 0.0 81 4 
C3 83.9 59.8 55.2 40.2 2.3 0.0 87 2 
C4 88.4 51.6 50.5 48.4 3.2 0.0 95 3 
C5 84.8 56.5 56.5 43.5 0.0 0.0 46 0 
C6 20.9 12.6 8.9 87.4 37.9 6.6 652 247 
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C7 61.5 38.5 38.5 61.5 17.9 0.0 39 7 
C8 23.9 4.3 4.3 95.7 69.6 37.0 46 32 
C9 65.7 25.7 25.7 74.3 20.0 0.0 35 7 

CXa 9.1 9.1 9.1 90.9 81.8 63.6 11 9 
CXd 50.0 50.0 50.0 50.0 0.0 0.0 2 0 
CXs 11.4 2.9 2.9 97.1 77.1 54.3 35 27 

Globally: 54.6 33.2 30.5 66.8 21.8 5.3 1622 353 
 

En complément, le Tableau 8 ci-dessous présente les résultats d’une analyse du « 1er voisin » (N1) 
déterminé pour chaque série lors du post-traitement du regroupement final. Le « 1er voisin » est le 
groupe (autre que celui retenu) avec lequel la série se corrèle le mieux. Dans la majorité des cas 
(54.6 %) le groupe attribué à la série est celui oƯrant la meilleure corrélation (cf. Tableau 7) et le 
1er voisin correspond alors au 2e meilleur choix de groupe en termes de coeƯicient de corrélation 
r. Mais il y aussi des cas où le 1er voisin oƯrirait une meilleure corrélation (r + élevé) que le groupe 
finalement retenu. Dans tous les cas, examiner le 1er voisin le plus fréquent d’un groupe est 
intéressant et renseigne eƯicacement sur le degré de ressemblance entre les groupes. On 
constate ainsi notamment que : 

 Une majorité (66 %) des séries du groupe C1 sont proches du groupe C9 (son voisin le plus 
fréquent), évoquant une ressemblance tout à fait logique entre ‘NOT-RHINE-ALL-OTHERS’ 
et ‘TRANSITION’. Réciproquement, près d’un tiers (31%) des séries du groupe C9 sont 
proches du groupe C1. 

 Les groupes C2, C3 et C4 se ressemblent, d’après les liens de voisinage recensés ici. Le 
groupe C3 a 2 voisins de fréquences égales (C1 ou C4) dont C1 rappelle que ce groupe C3 
montre une dynamique moins inertielle qui peut eƯectivement se confondre avec celle 
du médoïde du gros groupe C1 (‘NOT-RHINE-PA_B5-full’ ~ ‘NOT-RHINE-ALL-OTHERS’). 

 Le groupe C6 (‘RHINE-ALL-OTHERS’) a comme principal voisin le groupe C8 
(‘SINGULAR’), un constat peu signifiant qui indique seulement que la série choisie 
automatiquement comme médoïde pour représenter C8 est série relativement bien 
corrélée (r > 0.75) aux groupes « Rhin » C6 ou C7. 

 Les groupes C5 et C8, de tailles modestes, n’ont pas de 1er voisin assez fréquent (<20 %). 

Tableau 8 : Tableau indiquant pour chaque groupe les résultats d’une analyse du « 1er voisin » (N1) déterminé pour 
chaque série lors du post-traitement du regroupement final 

Group full name Group 1st Neighbor (N1) % N1 N N1 N points TOTAL 
NOT-RHINE-ALL-OTHERS C1 C9 66.33 327 493 
NOT-RHINE-PA_B2 C2 C4 41.98 34 81 
NOT-RHINE-PA_B5-full C3 C1 ou C4 34.48 30 87 
NOT-RHINE-PA_B6 C4 C3 52.63 50 95 
RHINE-A6-NEAR-KEHL C5 C9 19.57 9 46 
RHINE-ALL-OTHERS C6 C8 36.81 240 652 
RHINE-NEAR-BREISACH C7 C3 38.46 15 39 
SINGULAR C8 C7 10.87 5 46 
TRANSITION C9 C1 31.43 11 35 
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5.3 Carte des secteurs et interprétation 
La carte en page suivante (Figure 17 et Figure 18) présente une vue cartographique des résultats 
de ce travail de synthèse en un « regroupement final ». On y retrouve la plupart des groupes formés 
plus tôt par corrélation. La légende qui accompagne la carte décrit chaque « groupe final » avec 
l’explication hydrogéologique trouvée pour chacun d’eux (cf. Tableau 9). Cette légende ressemble 
donc à celle présentée plus tôt pour le regroupement par corrélation.  

Par ailleurs, des analyses statistiques d’indicateurs caractérisant les chroniques piézométriques 
ou le contexte des points de suivi, sont présentées en ANNEXE 2 : Analyses statistiques 
d’indicateurs du regroupement final (synthèse), à titre complémentaire. 

Tableau 9 : Caractérisation et description des neuf principaux groupes (et trois groupes secondaires de rebut)  

N° groupe Caractérisation 
C1 

(NOT-RHINE-
ALL-OTHERS) 

n = 493 

Groupe rassemblant les autres piézomètres de la Plaine d’Alsace hors 
influence significative du Rhin. Faibles épaisseurs de ZNS <5 mètres pour 
~85 % des points du groupe. Presqu’aucun point ne se trouve à proximité du 
Rhin (<1–2 km de part et d’autre du Rhin). Ce groupe contient la majorité des 
points du groupe CB_4 (soit environ 35% des points de C1), qui apparaissent 
souvent impactés par les prélèvements estivaux.  

C2 
(NOT-RHINE-

PA_B2) 
n = 81 

Groupe de piézomètres inertiels principalement concentrés au Nord de la 
zone d’étude à l’est du Rhin (environs de Rastatt – Karlsruhe) avec une épaisse 
zone non saturée (ZNS) presque partout >5 mètres, d’où les importantes 
composantes pluriannuelles dans leur dynamique. Explication appuyée par 
des indicateurs de temps de demi-décroissance (de vidange de l’aquifère) 
longs ainsi que par des temps d'arrivée des précipitations importants aussi. 

C3 
(NOT-RHINE-

PA_B5-full) 
n = 87 

Points localisés majoritairement (pour les 2/3 environ) au Sud d’une ligne W-E 
entre Sélestat et Lahr/Schwarzwald. Dont environ la moitié des points 
concentrés dans une zone relativement étroite de la rive droite du Rhin entre 
Vieux-Brisach (Breisach am Rhein) et Bad Krozingen. L'inertie (relativement 
importante mais sans délai notable par rapport aux pluies) sembler joue un 
rôle important dans l'établissement de ce cluster. ZNS là aussi souvent >5 
mètres. (Voir aussi le groupe ‘C7’, ci-dessous)  

C4 
(NOT-RHINE-

PA_B6) 
n = 95 

Points situés dans le Haut-Rhin, concentrés au Sud d’une ligne entre Colmar 
et Fribourg-en-Brisgau. Groupe caractérisé par une ZNS encore plus épaisse 
en général (épaisseur médiane de la ZNS >10 mètres) avec un comportement 
plus inertiel. Alimentation de l’aquifère par Sundgau. Très bonne cohérence 
avec les longs délais estimés d'arrivée des précipitations. 

C5 
(RHINE-A6-

NEAR-KEHL) 
n = 46 

Points fortement influencés par le Rhin, plus précisément impactés par le 
barrage agricole de Kehl-Strasbourg au sud-est de la ville. Points concentrés 
à l’amont du barrage, sur la rive droite du Rhin seulement (imperméabilisation 
anthropique de la rive gauche coté Strasbourg). Evolution temporelle 
(signature) très particulière de la piézométrie caractérisée par des niveaux 
nettement plus bas avant le milieu des années 1980 (hausse soudaine des 
niveaux vers 1985).  
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C6 
(RHINE-ALL-

OTHERS) 
n = 652 

Groupe rassemblant les autres points sous forte influence du Rhin, car 
sans explication forte pour distinguer des sous-groupes en son sein. 
Evolutions piézométriques visuellement similaires dans l’ensemble. Malgré 
cela, seulement une moitié des points du groupe environ ont une piézométrie 
bien corrélée (r > +0.6) avec le débit du Rhin ; l’autre moitié pourrait être 
quand même influencée par le Rhin mais en des zones où ses débits seraient 
davantage artificiels (eƯets de seuil en amont des infrastructures 
hydroélectriques) [2]. 
Très faibles épaisseurs de ZNS <5 mètres pour ~90 % des points du groupe, 
et même <2 mètres pour ~2/3 des points du groupe. 
Remarque : Il serait possible, techniquement, d’aƯiner le découpage de ce 
groupe, mais cela n’apparaît pas particulièrement utile d’un point de vue 
utilitaire pratique, ces points étant de toute façon très influencés par le Rhin 
et de ses aménagements. 

C7 
(RHINE-NEAR-

BREISACH) 
n = 39 

Groupe de piézomètres aux comportements relativement homogènes, 
concentrés dans une petite zone d’environ 40 km2 sur la rive droite du Rhin, 
près de Vieux-Brisach (Breisach am Rhein). Faibles épaisseurs de ZNS 
presque partout <6 mètres. Dynamique plus réactive (moins inertielle) que 
son groupe voisin ‘C3’, sans décalage notable de la réponse aux pluies. 

C8 
(SINGULAR) 

n = 46 

Points dont la chronique montre une évolution piézométrique très 
singulière voire anormale. Ce groupe permet d’écarter des séries trop peu 
corrélées aux médoïdes des groupes principaux CB_1 à CB_7, avec une 
évolution trop rare dans le jeu de données pour qu’elle ait mené à la 
formation d’un cluster dédié ; et des séries cassées par une rupture 
(changement important et soudain) dans l’évolution de leurs niveaux 
(probablement dû à des erreurs lors du calcul des cotes piézométriques à 
partir des données de profondeur d’eau). 
Remarque : Cette liste de points jugés « aberrants » à ce stade est révisée plus 
tard, lors de la « Synthèse des résultats ». 

C9 
(TRANSITION) 

n = 35 

Points retirés des groupes principaux à cause d’une incohérence spatiale 
entre leur localisation et leur cluster initialement attribué (lors de la 
première itération de clustering par corrélation établissant les deux grands 
groupes Rhin versus Non-Rhin) : soit le point était placé dans un des clusters 
Rhin alors qu’il était éloigné du Rhin ; soit il était placé dans un des clusters 
Non-Rhin tout en étant très proche du Rhin. 
Ces points ne sont pas définitivement écartés, mais plutôt mis de côté, pour 
une éventuelle réintégration dans les groupes principaux lors de la phase à 
suivre de « Synthèse des résultats ». 

CXa 
(ANOMALOUS) 

n = 11 

Chroniques jugées « aberrantes », « anormales » ou en tout cas 
inexploitables par ces analyses. Ces chroniques peuvent être marquées 
par un saut abrupt peu réaliste du niveau piézométrique entre 2 portions, ou 
par des amplitudes de variations aberrantes (excessives) par rapport à tout 
son voisinage, etc. Ces points demeurent intéressants à conserver quelque 
part, en tant que cas particuliers à investiguer éventuellement (pour identifier 
plus précisément les raisons de leur apparence aberrante).  

CXd 
(DISCARD) 

n = 2 

Chroniques pouvant être écartées systématiquement, car il y a une autre 
chronique montrant la même évolution mais avec un suivi plus complet 
dans un point très proche, voire au même point XY mais à un autre intervalle 
de profondeur (cas d’un piézomètre à multiples intervalles crépinés). Si ces 2 
chroniques « à écarter » sont présentées ici malgré cela, c’est justement pour 
signaler que ces 2 ‘points’ sont superflus dans le jeu de données (du LUBW). 
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CXs 
(TOO-SHORT-
or-MISSING) 

n = 35 

Chroniques qui ont été ajoutées lors des itérations de post-traitement des 
résultats, mais qui n’ont finalement pas pu être intégrées avec suƯisamment 
de confiance aux groupes définis, car eƯectivement trop courtes et/ou avec 
trop d’interruptions de leur suivi piézométrique (périodes sans donnée). 
Ces chroniques n’ont pas montré de corrélation (ni visuelle ni statistique) 
assez claire et forte avec le groupe suggéré par l’algorithme de post-
traitement, pour que ces points soient confirmés dans ces groupes. Ce 
groupe ‘CXs’ réunit ainsi des points dont les chroniques s’avèrent 
inexploitables, non en raison d’un signal aberrant mais plutôt ici parce que 
trop courtes ou trop lacunaires. 
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Figure 17 Carte de synthèse des résultats avec le regroupement final. 
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Figure 18 Carte de synthèse des résultats avec le regroupement final : zooms sur les secteurs de Kehl et Breisach 
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L’importance relative, dans chaque groupe, de l’influence des forçages climatiques 
(précipitations), du Rhin, ainsi que de l’influence des prélèvements estivaux, a également pu être 
analysée. La Figure 19 indique la répartition, par groupe, du forçage dominant de chaque point.  

 

Figure 19  Résumé sur les forçages dominants par groupe : diagramme des proportions d’influence des 9 groupes 
retenus (C1-C9) selon le climat (précipitations), le Rhin ainsi que l’influence des prélèvements estivaux  
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5.4 Vers une délimitation géographique de secteurs… 
L’objectif est de délimiter des secteurs géographiques avec les diƯérents partenaires franco-
allemands, à partir des résultats (groupes de points) obtenus par le travail de synthèse présenté 
ci-dessus. Ces travaux, en cours, permettent d’ores et déjà de délimiter plusieurs secteurs 
géographiques : 

1) Des secteurs de forçages naturels homogènes ou de contextes particuliers : 
a. Des zones qui pourraient être délimitées par une importante épaisseur de la zone non 

saturée (ZNS) (cf. groupes C2, C3 et C4) ; 
b. Des zones géologiques / lithologiques particulières, ex. cônes de sédimentation en 

contrebas des Vosges ( « cônes de déjections »), aussi avec une épaisse ZNS (cf. 
exemple avec le groupe C4 : Figure 20 ci-dessous) ; 

   

Figure 20  A gauche : Sous-groupe de piézomètres (points verts du groupe C4), leurs polygones de Voronoï 
(contours verts), et les contours de la carte géologique harmonisée au 1 : 50 000). A droite : Les contours 
géographiques dessinés (surface verte) à partir de ces trois informations délimitent une zone sous influence 
des « cailloutis des cônes de déjection » (avec une épaisse ZNS). 
 

c. Des repères topographiques, ex. la basse vallée du Rhin et ses zones fortement liées à 
la dynamique du fleuve (groupes C5, C6, C7), cf. l’exemple en Figure 21; 

     
Figure 21  A gauche : Sous-groupe de piézomètres (points bleus du groupe C6), ses polygones de Voronoï 
(lignes bleues), l’épaisseur de la zone non saturée (rouge foncé = nappe profonde, jaune = nappe très proche 
de la surface voire cours/plan d’eau). A droite : Les contours géographiques dessinés (surface grise) à partir 
de ces trois informations délimitent une zone sous forte influence du Rhin avec une ZNS très peu épaisse. 

 



 
 

48 
 

d. Des secteurs de la Plaine d’Alsace hors influence du Rhin (sans corrélation significative 
avec ses débits) et de faibles épaisseurs de ZNS (cf. groupe C1) ; 

e. Des zones avec un délai notable de la réponse aux pluies (réactivité/inertie) ; 
f. etc. 

 
2) Des secteurs aƯectés par des forçages anthropiques : 

a. Des zones situées en aval d’aménagements hydroélectriques du Rhin, soit dans la 
partie amont (cf. groupes C6 et C7) ; 

b. Des zones possiblement influencées par des prélèvements majoritairement estivaux, 
qui pourrait être aƯinées par suite des résultats dans les actions en cours (cf. groupes 
C1 et C3). 

Ces travaux de définition de secteurs géographiques (délimitation par dessin de polygones à dire 
d’expert sur la base de la synthèse des résultats des clusterings et de plusieurs informations sur 
le contexte hydrogéologique des points) vont se poursuivre en fin 2025/2026.  
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6 CONCLUSION 
Le travail réalisé dans le cadre de cette sous-action a permis l’identification de neuf groupes 
principaux dans l'aquifère rhénan, obtenus par une combinaison de trois méthodes de 
regroupement (basées sur des indicateurs ou sur la corrélation entre les chroniques 
piézométriques). 

Ce travail a également permis de déterminer les types de forçages (influences perceptibles sur la 
piézométrie) qui caractérisent chacun des groupes identifiés. 

De fait, le travail réalisé constitue une base solide pour l’exercice de délimitation géographique 
de secteurs hydrogéologiques dans la zone d’étude (finalisation en fin 2025/2026).  

Le travail réalisé a mis en lumière les avantages relatifs de plusieurs méthodes diƯérentes pour 
analyser puis regrouper des chroniques piézométriques. Les méthodes utilisées se diƯérencient 
par leurs données d’entrée (chroniques entières, caractéristiques numériques ou indicateurs 
hydrodynamiques), leurs contraintes (induisant un nombre de chroniques utilisables in fine 
diƯérent selon la méthode), et leur flexibilité (possibilité ou non de rajouter des points a 
posteriori). La nature diƯérente des données utilisées pour procéder aux regroupements souligne 
le fait que chaque méthode peut être la plus adaptée en fonction de l’objectif recherché 
(regrouper les chroniques similaires ; celles qui partagent des influences communes ; ou encore, 
celles qui présentent le plus de variabilité). Dans une approche globale, un exercice de synthèse 
de l’ensemble des résultats a été conduit. 

L’exercice de synthèse des résultats produits par plusieurs approches de regroupement est 
complexe et nécessite une hiérarchisation des méthodes employées. Une perspective pourrait 
être de développer une méthode de regroupement hybride combinant explicitement et 
simultanément des informations de type indicateurs et de type corrélations, avec une 
pondération qui pourrait être à ajuster en fonction des objectifs pratiques de l’exercice. 

De plus, le choix méthodologique a été fait ici de définir de grands groupes de comportements 
relativement similaires, sans aƯiner (subdiviser) géographiquement en fonction de variations plus 
subtiles. Les secteurs (groupes de points) ainsi formés constituent des ensembles « globaux » qui 
pourraient être subdivisés en plusieurs sous-ensembles, en fonction de diƯérences plus fines 
des évolutions/variations piézométriques, ou encore par le repérage de comportements 
particuliers d’échelles plus « locales ». Les secteurs « globaux » présentés ici constituent ainsi un 
socle solide pour d’éventuels exercices de définition de secteurs « locaux » (plus ciblés 
géographiquement, cf. chapitre 5.4), par exemple en vue de définir des périmètres de 
représentativité des modèles hydrogéologiques aux points qui sont développés par ailleurs dans 
cette étude GRETA. 

A l’heure de la rédaction de ce document, d’autres travaux sont encore en cours dans le cadre du 
projet GRETA, notamment les travaux d’ « Analyse et d’interprétation sur chaque secteur des 
relations entre le niveau de la nappe, les rivières et les prélèvements dans l'aquifère rhénan » , 
ainsi que les travaux de modélisation maillée (LOGAR). Ces derniers pourront compléter cette 
étude de regroupement des chroniques piézométriques.  
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1. ANNEXE 1 : Composition des groupes finaux 

Ci-dessous, un graphique par groupe (cluster) montrant les courbes standardisées (centrées et 
réduites, d’où l’absence d’unité de l’axe Y et la position autour de Y = 0 des courbes) des séries 
piézométriques des n points composant le groupe. La courbe noire en avant-plan = le 
médoïde du groupe. Les autres courbes, en arrière-plan, ont des couleurs aléatoires. 
Explications des textes placés en haut de chaque graphique de ce type : 

 S = identifiant de la série (ici = le médoïde du groupe) ; 
 C = identifiant court du groupe (cluster, d’où ‘C’) ; 
 M = membres du groupe (ici cette information se résume à les compter : « (n=493) ») ; 
 N*(S) = résumé des principaux voisins de la série (id groupe et corrélation au médoïde) ; 
 r = corrélation de la série par rapport au médoïde du groupe (ici parfaite : r = +1, puisque 

c’est la série médoïde qui est mise en avant-plan ; d’où l’ajout de la mention « (ref.) ») ; 
 N1(M) : résumé des plus fréquents « premiers voisins » des membres (id groupe voisin et 

nombre d’occurrences ; puis mention du nombre de groupes voisins distincts recensés 
pour ces membres (info utile si tous les voisins ne peuvent pas être aƯichés : « (n=…) »). 

 

C1 : NOT-RHINE-ALL-OTHERS 
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C2 : NOT-RHINE-PA_B2 

 

 

C3 : NOT-RHINE-PA_B5-full 
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C4 : NOT-RHINE-PA_B6 

 

 

C5 : RHINE-A6-NEAR-KEHL 
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C6 : RHINE-ALL-OTHERS 

 

 

C7 : RHINE-NEAR-BREISACH 
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C8 : SINGULAR 

 

 

C9 : TRANSITION 
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CXa : ANOMALOUS 

 

 

CXd : DISCARD 
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CXs : TOO-SHORT-or-MISSING 
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2. ANNEXE 2 : Analyses statistiques d’indicateurs du 
regroupement final (synthèse) 

 

Matrice des corrélations (r) entre les médoïdes et Groupes de groupes bien corrélés 

 

Il est conseillé d’ignorer les groupes secondaires (CX…) sauf si le but est spécifiquement 
d’identifier d’où les séries de ces groupes peuvent provenir majoritairement (ex. CXd surtout de 
C3 ?). La partie supérieure droite du diagramme illustre la force des corrélations, dont les 
coeƯicients r sont rapportés dans la partie inférieure gauche.  
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Battement de la nappe 

Les battements (amplitudes de variation du niveau piézométrique) sont plus importants dans 
les groupes « Non-Rhin », en particulier dans le groupe C4… 
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Corrélation au débit du Rhin 

Les groupes C6 et C9 présentent les corrélations les plus fortes, en moyenne, au débit total du 
Rhin. C’est moins marqué avec le débit de base, où la corrélation médiane des groupes Rhin se 
confond à celle de certains groupes Non-Rhin. 
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Décomposition de la série piézométrique : réactivité / inertie 

Les groupes présentant en moyenne les dynamiques les moins inertielles sont C1 et C6. Les 
groupes les plus inertiels sont C2 et C4. Remarque : les résultats ne sont pas fiables pour C5 car 
la hausse soudaine et pérenne du niveau piézométrique vers 1985 est assimilée par l’algorithme 
d’analyse à une fluctuation pluriannuelle très lente périodique (alors que c’est un événement 
unique). 
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Tendance d’évolution temporelle des Niveaux bas (étiages) annuels 

D’après les indicateurs de tendance ayant pu être évalués (soit 1336 des 1528 points classés 
dans les groupes principaux en excluant C8 ‘SINGULAR’) on voit clairement une opposition de la 
tendance générale des niveaux piézométriques entre les nappes influencées par le Rhin (plus 
souvent à la hausse), d’une part, et les autres nappes non influencées par le Rhin (plutôt à la 
baisse), d’autre part. Noter que la tendance est négligeable, non significative, dans la majorité 
des cas, peu importe le groupe.  
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Epaisseur de la zone non saturée (ZNS) 

Les groupes de points des groupes C2, C3 et C4 surtout, sont situés à des endroits où la zone 
non saturée (ZNS) est d’une épaisseur (>5 mètres) notable et impactante. Cette relation entre 
épaisseur de ZNS et degré d’inertie (importance des composantes pluriannuelles) se perçoit 
assez bien dans le graphique bivarié (nuage de points) ci-dessous, bien que la relation ne soit 
que partielle d’après cette analyse (où les données n’ont pas été filtrées finement). 
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